
Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Stochastic Lossy Channel Games

Daniel Stan

EPITA Research Lab1, France

February 21, 2024

joint work with Muhammad Najib2,
Anthony W. Lin3,4,

Parosh Abdulla5
1 2

3 4 5

1 / 19

Channel Systems Concurrent Finite Games CSLCG Conclusions

Outline

1 Lossy Channel Systems
2 Finite Concurrent Games
3 Infinite Concurrent Games

2 / 19 outline

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems

3 / 19

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

Modelisation and verification of systems with:
Network transmissions;
Transactional operations;
TSO semantics [AABN18]

For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,00

d

1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,00

d

1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c
0

0,00

d

1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c
0

0,00

d

1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

0

0,0

0

d

1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,0

0

d

1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,0

0

d
1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,0

0

d
1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,0

0

d
1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.

For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Channel Systems (FIFO): Motivations

l0

l1

P1

c!0d?1

d?0d?1

c!1d?0

l2

l3

P2

d!0c?1

c?0c?1

d!1c?0

c

00,0

0

d
1

Communication:
Send a message m on c: c!m

Receive a message c?m, only if m was at the end of the queue.
For this talk: only one channel, and one component.

4 / 19 channelsystems

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c

c
a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:
5 / 19 lossy

Channel Systems Concurrent Finite Games CSLCG Conclusions

Subword-ordering ⪯ is a well-quasi order [FS01]

Definition ([FS01])

(S ,⪯) is a well-quasi-order (WQO) if: ∀(si)i∈N ∈ SN,∃i < j : si ⪯ sj

(S ,→,⪯) is a well-structured transition system:

s s ′

t

∀s,s ′,t, ⪯

t ′
∃∃∃

⪯⪯ ⪯

a.k.a. Pre(s)= {t | s → t} preserves ⪯-closed sets

backward reachability scheme [FS01] for non-deterministic schedulers:⋃
n≥0

Pren(R)= {s | ∃(sn) : s = s0 → s1 → . . .sk ∈R} = �E(♢R)�

6 / 19 wqo

Channel Systems Concurrent Finite Games CSLCG Conclusions

Subword-ordering ⪯ is a well-quasi order [FS01]

Definition ([FS01])

(S ,⪯) is a well-quasi-order (WQO) if: ∀(si)i∈N ∈ SN,∃i < j : si ⪯ sj
(S ,→,⪯) is a well-structured transition system:

s s ′

t

∀s,s ′,t, ⪯

t ′
∃∃∃

⪯⪯ ⪯

a.k.a. Pre(s)= {t | s → t} preserves ⪯-closed sets

backward reachability scheme [FS01] for non-deterministic schedulers:⋃
n≥0

Pren(R)= {s | ∃(sn) : s = s0 → s1 → . . .sk ∈R} = �E(♢R)�

6 / 19 wqo

Channel Systems Concurrent Finite Games CSLCG Conclusions

Subword-ordering ⪯ is a well-quasi order [FS01]

Definition ([FS01])

(S ,⪯) is a well-quasi-order (WQO) if: ∀(si)i∈N ∈ SN,∃i < j : si ⪯ sj
(S ,→,⪯) is a well-structured transition system:

s s ′

t

∀s,s ′,t, ⪯
t ′
∃∃∃

⪯⪯ ⪯
a.k.a. Pre(s)= {t | s → t} preserves ⪯-closed sets

backward reachability scheme [FS01] for non-deterministic schedulers:⋃
n≥0

Pren(R)= {s | ∃(sn) : s = s0 → s1 → . . .sk ∈R} = �E(♢R)�

6 / 19 wqo

Channel Systems Concurrent Finite Games CSLCG Conclusions

Subword-ordering ⪯ is a well-quasi order [FS01]

Definition ([FS01])

(S ,⪯) is a well-quasi-order (WQO) if: ∀(si)i∈N ∈ SN,∃i < j : si ⪯ sj
(S ,→,⪯) is a well-structured transition system:

s s ′

t

∀s,s ′,t, ⪯
t ′
∃∃∃

⪯⪯ ⪯
a.k.a. Pre(s)= {t | s → t} preserves ⪯-closed sets

backward reachability scheme [FS01] for non-deterministic schedulers:⋃
n≥0

Pren(R)= {s | ∃(sn) : s = s0 → s1 → . . .sk ∈R} = �E(♢R)�

6 / 19 wqo

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S ,Pr).
Local lossiness assumption: at every step, there is a positive probability λ ∈ (0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

c
a b c

c
a c

c
b c c

a . . .

λ(1−λ)2
λ(1−λ)2

λ2(1−λ)

Qualitative setting:
�NZ(♢R)� = {s | Pr(s →∗ s ′ ∈R)> 0} �AS(♢R)� = {s | Pr(s →∗ s ′ ∈R)= 1}

7 / 19 lossystoch

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S ,Pr).
Local lossiness assumption: at every step, there is a positive probability λ ∈ (0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

c
a b c

c
a c

c
b c c

a . . .

λ(1−λ)2
λ(1−λ)2

λ2(1−λ)

Qualitative setting:
�NZ(♢R)� = {s | Pr(s →∗ s ′ ∈R)> 0} �AS(♢R)� = {s | Pr(s →∗ s ′ ∈R)= 1}

7 / 19 lossystoch

Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S ,Pr).
Local lossiness assumption: at every step, there is a positive probability λ ∈ (0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

c
a b c

c
a c

c
b c c

a . . .

λ(1−λ)2
λ(1−λ)2

λ2(1−λ)

Qualitative setting:
�NZ(♢R)� = {s | Pr(s →∗ s ′ ∈R)> 0} �AS(♢R)� = {s | Pr(s →∗ s ′ ∈R)= 1}

7 / 19 lossystoch

Channel Systems Concurrent Finite Games CSLCG Conclusions

Stochastic Concurrent Finite Games

8 / 19

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)

Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Game on a Finite graph

s1 s2

t1 t2

w1 w2

a−

b−

−a

−
b

aa,bbab,b
a

aa,bb

ab,b
a

Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).

9 / 19 concurrentdef

Channel Systems Concurrent Finite Games CSLCG Conclusions

Different Ways of Winning

Players play strategies:

∀i ∈ Agt, σi : s0 s1 . . . sn︸ ︷︷ ︸
history ∈S+

7→ δ ∈ Dist(Acti (sn)︸ ︷︷ ︸
allowed actions in last state

)

Zero-sum case for two players, we compute the winning regions:
�NZ(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)> 0}
�AS(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)= 1}

For n players with objectives (Φi)i∈Agt and a specification Γ, we consider the
Rational Verification problem:

E-CORE:

Does there exists σ⃗ in the core satisfying Γ?

A-CORE:

Do all σ⃗ in the core satisfy Γ?

10 / 19 gameanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Different Ways of Winning

Players play strategies:

∀i ∈ Agt, σi : s0 s1 . . . sn︸ ︷︷ ︸
history ∈S+

7→ δ ∈ Dist(Acti (sn)︸ ︷︷ ︸
allowed actions in last state

)

Zero-sum case for two players, we compute the winning regions:
�NZ(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)> 0}
�AS(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)= 1}

For n players with objectives (Φi)i∈Agt and a specification Γ, we consider the
Rational Verification problem:

E-CORE:

Does there exists σ⃗ in the core satisfying Γ?

A-CORE:

Do all σ⃗ in the core satisfy Γ?

10 / 19 gameanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Different Ways of Winning

Players play strategies:

∀i ∈ Agt, σi : s0 s1 . . . sn︸ ︷︷ ︸
history ∈S+

7→ δ ∈ Dist(Acti (sn)︸ ︷︷ ︸
allowed actions in last state

)

Zero-sum case for two players, we compute the winning regions:
�NZ(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)> 0}
�AS(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)= 1}

For n players with objectives (Φi)i∈Agt and a specification Γ, we consider the
Rational Verification problem:

E-CORE:

Does there exists σ⃗ in the core satisfying Γ?

A-CORE:

Do all σ⃗ in the core satisfy Γ?

10 / 19 gameanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Different Ways of Winning

Players play strategies:

∀i ∈ Agt, σi : s0 s1 . . . sn︸ ︷︷ ︸
history ∈S+

7→ δ ∈ Dist(Acti (sn)︸ ︷︷ ︸
allowed actions in last state

)

Zero-sum case for two players, we compute the winning regions:
�NZ(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)> 0}
�AS(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)= 1}

For n players with objectives (Φi)i∈Agt and a specification Γ, we consider the
Rational Verification problem:

E-CORE:

Does there exists σ⃗ in the core satisfying Γ?

A-CORE:

Do all σ⃗ in the core satisfy Γ?

10 / 19 gameanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Different Ways of Winning

Players play strategies:

∀i ∈ Agt, σi : s0 s1 . . . sn︸ ︷︷ ︸
history ∈S+

7→ δ ∈ Dist(Acti (sn)︸ ︷︷ ︸
allowed actions in last state

)

Zero-sum case for two players, we compute the winning regions:
�NZ(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)> 0}
�AS(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)= 1}

For n players with objectives (Φi)i∈Agt and a specification Γ, we consider the
Rational Verification problem:
E-CORE: Does there exists σ⃗ in the core satisfying Γ?
A-CORE: Do all σ⃗ in the core satisfy Γ?

10 / 19 gameanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set R ⊆ S of states.
How to compute the winning set for player 1?

R X1
X2

X3

p > 0 p > 0 p > 0

Recipe for �NZ(♢R)�1
Take X :=R

Repeat until convergence:
// Add to X any state that 1 can enforce
// reaching with positive probability
X :=X ∪Pre1(X)

⇝ By determinacy, we can compute �AS(□R)�2.

11 / 19 zsfixpoint

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set R ⊆ S of states.
How to compute the winning set for player 1?

R X1
X2

X3

p > 0

p > 0 p > 0

Recipe for �NZ(♢R)�1
Take X :=R

Repeat until convergence:

// Add to X any state that 1 can enforce
// reaching with positive probability
X :=X ∪Pre1(X)

⇝ By determinacy, we can compute �AS(□R)�2.

11 / 19 zsfixpoint

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set R ⊆ S of states.
How to compute the winning set for player 1?

R X1
X2

X3

p > 0 p > 0

p > 0

Recipe for �NZ(♢R)�1
Take X :=R

Repeat until convergence:

// Add to X any state that 1 can enforce
// reaching with positive probability
X :=X ∪Pre1(X)

⇝ By determinacy, we can compute �AS(□R)�2.

11 / 19 zsfixpoint

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set R ⊆ S of states.
How to compute the winning set for player 1?

R X1
X2

X3

p > 0 p > 0 p > 0

Recipe for �NZ(♢R)�1
Take X :=R
Repeat until convergence:

// Add to X any state that 1 can enforce
// reaching with positive probability
X :=X ∪Pre1(X)

⇝ By determinacy, we can compute �AS(□R)�2.

11 / 19 zsfixpoint

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set R ⊆ S of states.
How to compute the winning set for player 1?

R X1
X2

X3

p > 0 p > 0 p > 0

Recipe for �NZ(♢R)�1
Take X :=R
Repeat until convergence:

// Add to X any state that 1 can enforce
// reaching with positive probability
X :=X ∪Pre1(X)

⇝ By determinacy, we can compute �AS(□R)�2.

11 / 19 zsfixpoint

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R

X
Y Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1

// Where can we force positive probability?
Y := �NZ(♢R)�1
// Now, stay safe in this set
X := �AS(□Y)�1
// "Remove actions losing for AS(□Y) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y)< 1}
Repeat until convergence
⇝ By determinacy, we can compute �NZ(□R)�2.

12 / 19 zsfixpoint2

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R

X

Y

Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1
// Where can we force positive probability?
Y := �NZ(♢R)�1

// Now, stay safe in this set
X := �AS(□Y)�1
// "Remove actions losing for AS(□Y) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y)< 1}
Repeat until convergence
⇝ By determinacy, we can compute �NZ(□R)�2.

12 / 19 zsfixpoint2

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R

X

Y Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1
// Where can we force positive probability?
Y := �NZ(♢R)�1

// Now, stay safe in this set
X := �AS(□Y)�1
// "Remove actions losing for AS(□Y) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y)< 1}
Repeat until convergence
⇝ By determinacy, we can compute �NZ(□R)�2.

12 / 19 zsfixpoint2

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R X
Y Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1
// Where can we force positive probability?
Y := �NZ(♢R)�1
// Now, stay safe in this set
X := �AS(□Y)�1

// "Remove actions losing for AS(□Y) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y)< 1}
Repeat until convergence
⇝ By determinacy, we can compute �NZ(□R)�2.

12 / 19 zsfixpoint2

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R X
Y Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1
// Where can we force positive probability?
Y := �NZ(♢R)�1
// Now, stay safe in this set
X := �AS(□Y)�1
// "Remove actions losing for AS(□Y) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y)< 1}
Repeat until convergence

⇝ By determinacy, we can compute �NZ(□R)�2.

12 / 19 zsfixpoint2

Channel Systems Concurrent Finite Games CSLCG Conclusions

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R X
Y Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1
// Where can we force positive probability?
Y := �NZ(♢R)�1
// Now, stay safe in this set
X := �AS(□Y)�1
// "Remove actions losing for AS(□Y) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y)< 1}
Repeat until convergence
⇝ By determinacy, we can compute �NZ(□R)�2.

12 / 19 zsfixpoint2

Channel Systems Concurrent Finite Games CSLCG Conclusions

Example: Skirmish Game Analysis

s0

sw sl

hw

rs
rs//

rw
,h
s

rw//
/ ,
hs

P1: AS(♢{ sw })

P2: NZ
(
□{ sw }

)
.

Step 1: Y =X = { s0 , sw }.

But action r is losing."

Step 2: Y =X = { sw } = �AS(♢ sw)�1.
Some remarks:

∀ϵ> 0; Player 1 can “win” with probability 1−ϵ,
For any finite memory strategy σ2, player 1 can
go to sw almost-surely.

Still, Player 2 wins this game but with an infinite
memory strategy.

∀n,σ2(s0 . . . s0︸ ︷︷ ︸
n times

)[s]=
(
1
2

)2−n

13 / 19 skirmishanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Example: Skirmish Game Analysis

s0

sw sl

hw

rs
rs//

rw
,h
s

rw//
/ ,
hs

P1: AS(♢{ sw })

P2: NZ
(
□{ sw }

)
.

Step 1: Y =X = { s0 , sw }.
But action r is losing."

Step 2: Y =X = { sw } = �AS(♢ sw)�1.
Some remarks:

∀ϵ> 0; Player 1 can “win” with probability 1−ϵ,
For any finite memory strategy σ2, player 1 can
go to sw almost-surely.

Still, Player 2 wins this game but with an infinite
memory strategy.

∀n,σ2(s0 . . . s0︸ ︷︷ ︸
n times

)[s]=
(
1
2

)2−n

13 / 19 skirmishanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Example: Skirmish Game Analysis

s0

sw sl

hw

rs
rs//

rw
,h
s

rw//
/ ,
hs

P1: AS(♢{ sw })

P2: NZ
(
□{ sw }

)
.

Step 1: Y =X = { s0 , sw }.
But action r is losing."

Step 2: Y =X = { sw } = �AS(♢ sw)�1.

Some remarks:

∀ϵ> 0; Player 1 can “win” with probability 1−ϵ,
For any finite memory strategy σ2, player 1 can
go to sw almost-surely.

Still, Player 2 wins this game but with an infinite
memory strategy.

∀n,σ2(s0 . . . s0︸ ︷︷ ︸
n times

)[s]=
(
1
2

)2−n

13 / 19 skirmishanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Example: Skirmish Game Analysis

s0

sw sl

hw

rs
rs//

rw
,h
s

rw//
/ ,
hs

P1: AS(♢{ sw })

P2: NZ
(
□{ sw }

)
.

Step 1: Y =X = { s0 , sw }.
But action r is losing."

Step 2: Y =X = { sw } = �AS(♢ sw)�1.
Some remarks:

∀ϵ> 0; Player 1 can “win” with probability 1−ϵ,
For any finite memory strategy σ2, player 1 can
go to sw almost-surely.

Still, Player 2 wins this game but with an infinite
memory strategy.

∀n,σ2(s0 . . . s0︸ ︷︷ ︸
n times

)[s]=
(
1
2

)2−n

13 / 19 skirmishanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Example: Skirmish Game Analysis

s0

sw sl

hw

rs
rs//

rw
,h
s

rw//
/ ,
hs

P1: AS(♢{ sw })

P2: NZ
(
□{ sw }

)
.

Step 1: Y =X = { s0 , sw }.
But action r is losing."

Step 2: Y =X = { sw } = �AS(♢ sw)�1.
Some remarks:

∀ϵ> 0; Player 1 can “win” with probability 1−ϵ,
For any finite memory strategy σ2, player 1 can
go to sw almost-surely.

Still, Player 2 wins this game but with an infinite
memory strategy.

∀n,σ2(s0 . . . s0︸ ︷︷ ︸
n times

)[s]=
(
1
2

)2−n

13 / 19 skirmishanalysis

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Games + Lossy Channel Systems

=
Infinite State Games

14 / 19

Channel Systems Concurrent Finite Games CSLCG Conclusions

Concurrent Games + Lossy Channel Systems
=

Infinite State Games

14 / 19

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

aab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

aab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

a

ab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

a

ab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

a

ab

abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

a

ab

abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

aab

abc

c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

aab abc

c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

aab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

CSLCG: Def by Example

Sender

aab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:
15 / 19 clcgex

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

Prei (X)= {s | i can enforce reaching X in one step with pp.}.
Prei is computable for regular sets.
Termination: Thanks to WQO’s property [FS01].
Correctness: Finite Attractor property [BBS06].

Theorem
Let R ⊆ L ·M∗ a regular set of configurations. One can compute the set of winning
configurations:

Positive P. Reachability: �NZ(♢R)�1;
Almost Sure Reachability: �AS(♢R)�1;

Almost sure Safety: �AS(□R)�1;
Positive P. Safety: �NZ(□R)�1;

16 / 19 cslcg-zerosum

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!
Prei (X)= {s | i can enforce reaching X in one step with pp.}.
Prei is computable for regular sets.
Termination: Thanks to WQO’s property [FS01].
Correctness: Finite Attractor property [BBS06].

Theorem
Let R ⊆ L ·M∗ a regular set of configurations. One can compute the set of winning
configurations:

Positive P. Reachability: �NZ(♢R)�1;
Almost Sure Reachability: �AS(♢R)�1;

Almost sure Safety: �AS(□R)�1;
Positive P. Safety: �NZ(□R)�1;

16 / 19 cslcg-zerosum

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!
Prei (X)= {s | i can enforce reaching X in one step with pp.}.
Prei is computable for regular sets.
Termination: Thanks to WQO’s property [FS01].
Correctness: Finite Attractor property [BBS06].

Theorem
Let R ⊆ L ·M∗ a regular set of configurations. One can compute the set of winning
configurations:

Positive P. Reachability: �NZ(♢R)�1;
Almost Sure Reachability: �AS(♢R)�1;

Almost sure Safety: �AS(□R)�1;
Positive P. Safety: �NZ(□R)�1;

16 / 19 cslcg-zerosum

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!
Prei (X)= {s | i can enforce reaching X in one step with pp.}.
Prei is computable for regular sets.
Termination: Thanks to WQO’s property [FS01].
Correctness: Finite Attractor property [BBS06].

Theorem
Let R ⊆ L ·M∗ a regular set of configurations. One can compute the set of winning
configurations:

Positive P. Reachability: �NZ(♢R)�1;
Almost Sure Reachability: �AS(♢R)�1;

Almost sure Safety: �AS(□R)�1;
Positive P. Safety: �NZ(□R)�1;

16 / 19 cslcg-zerosum

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 2: Conjunction of Objectives

Theorem
Let Φ be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region �Φ�i is computable.

⇝ More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(□ . . .)) with infinite state space.

NB: It is the “maximal” possible result:

Bertrand and al [BBS07] proves that NZ(□♢R) (Büchi) and
AS(□♢R1∧♢□R2) cases are undecidable.

[May03] proved that �E(□R)�1 cannot be computed.

17 / 19 cslcg-conj

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 2: Conjunction of Objectives

Theorem
Let Φ be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region �Φ�i is computable.

⇝ More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(□ . . .)) with infinite state space.

NB: It is the “maximal” possible result:

Bertrand and al [BBS07] proves that NZ(□♢R) (Büchi) and
AS(□♢R1∧♢□R2) cases are undecidable.

[May03] proved that �E(□R)�1 cannot be computed.
17 / 19 cslcg-conj

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 3: Core

Theorem
For a pair (G ,Γ) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property Γ= AS(ϕ) with ϕ of the form

∧
i ♢Ri ,

∧
i□Ri , or∧

i□♢Ri , the problems of E-Core and A-Core are decidable.

Guess the set of winning players W ⊆ Agt;
Check that the 1.5-player game of Agt vs ; is winning for the conjunction:

Γ∧ ∧
i∈W

AS(ϕi)∧
∧
i∉W

NZ(¬ϕi)

For all C ⊆W , check that C against C is losing.
NB: “maximal” result since Büchi+coBüchi objectives make the problem undecidable
[BBS07].

18 / 19 cslcg-core

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 3: Core

Theorem
For a pair (G ,Γ) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property Γ= AS(ϕ) with ϕ of the form

∧
i ♢Ri ,

∧
i□Ri , or∧

i□♢Ri , the problems of E-Core and A-Core are decidable.

Guess the set of winning players W ⊆ Agt;
Check that the 1.5-player game of Agt vs ; is winning for the conjunction:

Γ∧ ∧
i∈W

AS(ϕi)∧
∧
i∉W

NZ(¬ϕi)

For all C ⊆W , check that C against C is losing.

NB: “maximal” result since Büchi+coBüchi objectives make the problem undecidable
[BBS07].

18 / 19 cslcg-core

Channel Systems Concurrent Finite Games CSLCG Conclusions

Contribution 3: Core

Theorem
For a pair (G ,Γ) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property Γ= AS(ϕ) with ϕ of the form

∧
i ♢Ri ,

∧
i□Ri , or∧

i□♢Ri , the problems of E-Core and A-Core are decidable.

Guess the set of winning players W ⊆ Agt;
Check that the 1.5-player game of Agt vs ; is winning for the conjunction:

Γ∧ ∧
i∈W

AS(ϕi)∧
∧
i∉W

NZ(¬ϕi)

For all C ⊆W , check that C against C is losing.
NB: “maximal” result since Büchi+coBüchi objectives make the problem undecidable
[BBS07].

18 / 19 cslcg-core

Channel Systems Concurrent Finite Games CSLCG Conclusions

Summary and future work

Rational Verification problem on infinite state still decidable;
Qualitative Objectives for Stochastic Equilibria;

vs : The probabilistic setting is more computable than the ND one.

Future work:
Restrictions on the strategy classes (FM only?);
Nash Equilibria;
Partial observation (Signal Games).

Thank you for your attention

19 / 19 conclusions

Channel Systems Concurrent Finite Games CSLCG Conclusions

Summary and future work

Rational Verification problem on infinite state still decidable;
Qualitative Objectives for Stochastic Equilibria;

vs : The probabilistic setting is more computable than the ND one.
Future work:

Restrictions on the strategy classes (FM only?);
Nash Equilibria;
Partial observation (Signal Games).

Thank you for your attention

19 / 19 conclusions

Channel Systems Concurrent Finite Games CSLCG Conclusions

Summary and future work

Rational Verification problem on infinite state still decidable;
Qualitative Objectives for Stochastic Equilibria;

vs : The probabilistic setting is more computable than the ND one.
Future work:

Restrictions on the strategy classes (FM only?);
Nash Equilibria;
Partial observation (Signal Games).

Thank you for your attention

19 / 19 conclusions

Bibliography I

[AABN18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. A load-buffer
semantics for total store ordering. Logical Methods in Computer Science, 14(1), 2018.

[BBS06] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. A note on the attractor-property of
infinite-state markov chains. Inf. Process. Lett., 97(2):58–63, 2006.

[BBS07] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Verifying nondeterministic probabilistic
channel systems against ω-regular linear-time properties. ACM Trans. Comput. Log., 9(1):5, 2007.

[dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. Theor.
Comput. Sci., 386(3):188–217, 2007.

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001.

[May03] Richard Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci.,
297(1-3):337–354, 2003.

1 / 5

Strategy Classes

A strategy for player i is:
σi : S

+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ S+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ S∗,∀s ∈ S+,σi (h · s)=σi (s)

Can’t we just play with DP strategies only?

2 / 5 strategyclasses

Strategy Classes

A strategy for player i is:
σi : S

+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ S+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ S∗,∀s ∈ S+,σi (h · s)=σi (s)

Can’t we just play with DP strategies only?

2 / 5 strategyclasses

Strategy Classes

A strategy for player i is:
σi : S

+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ S+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ S∗,∀s ∈ S+,σi (h · s)=σi (s)

Can’t we just play with DP strategies only?

2 / 5 strategyclasses

Strategy Classes

A strategy for player i is:
σi : S

+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ S+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ S∗,∀s ∈ S+,σi (h · s)=σi (s)

Can’t we just play with DP strategies only?

2 / 5 strategyclasses

Strategy Classes, Updated

A strategy for player i is: σi : (L ·M∗)+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ (L ·M∗)+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ (L ·M∗)∗,∀s ∈ L ·M∗,σi (h · s)=σi (s)

Finite Memory: the distribution of actions can be computed by a finite automaton.

∀δ ∈ Dist(Act), {h ∈ (L ·M∗)+ | σi (h)= δ} is a regular set

and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.

3 / 5 strategyclasses2

Strategy Classes, Updated

A strategy for player i is: σi : (L ·M∗)+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ (L ·M∗)+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ (L ·M∗)∗,∀s ∈ L ·M∗,σi (h · s)=σi (s)

Finite Memory: the distribution of actions can be computed by a finite automaton.

∀δ ∈ Dist(Act), {h ∈ (L ·M∗)+ | σi (h)= δ} is a regular set

and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.

3 / 5 strategyclasses2

Strategy Classes, Updated

A strategy for player i is: σi : (L ·M∗)+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ (L ·M∗)+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ (L ·M∗)∗,∀s ∈ L ·M∗,σi (h · s)=σi (s)

Finite Memory: the distribution of actions can be computed by a finite automaton.

∀δ ∈ Dist(Act), {h ∈ (L ·M∗)+ | σi (h)= δ} is a regular set

and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.

3 / 5 strategyclasses2

Strategy Classes, Updated

A strategy for player i is: σi : (L ·M∗)+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ (L ·M∗)+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ (L ·M∗)∗,∀s ∈ L ·M∗,σi (h · s)=σi (s)

Finite Memory: the distribution of actions can be computed by a finite automaton.

∀δ ∈ Dist(Act), {h ∈ (L ·M∗)+ | σi (h)= δ} is a regular set

and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.
3 / 5 strategyclasses2

Strategy Classes, Updated, Counting

A strategy for player i is Counting: if there exist two PFM strategies σu ,σv such that:

∀n≥ 1,∀h ∈ Sn,σ(h)= pn ·σu(h)+ (1−pn)σ
v (h)

Where:
pn = 2−1/(2k)

Counting strategies are sufficient for winning NZ(□ · · ·).

4 / 5 strategyclasses3

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

Played:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

hwPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

rsPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

rsPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

rsPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

rwPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

rwPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

rwPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

hsPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

hsPlayed:
5 / 5 skirmish

Skirmish Game [dAHK07]

A1(s0)= {h,r } A2(s0)= {s ,w }

hsPlayed:
5 / 5 skirmish

	Channel Systems
	Concurrent Finite Games
	CSLCG
	Conclusions
	Appendix

