CSLCG

Concurrent Stochastic Lossy Channel Games

Daniel Stan

EPITA Research Lab¹, France

February 21, 2024

UPPSALA

UNIVERSITET

- Lossy Channel Systems
- Finite Concurrent Games
- Infinite Concurrent Games

Channel Systems

CSLCO

Channel Systems (FIFO): Motivations

Modelisation and verification of systems with:

- Network transmissions;
- Transactional operations;
- TSO semantics [AABN18]

Channel Systems (FIFO): Motivations

Communication:

- Send a message *m* on c: c!*m*
- Receive a message c?m, only if m was at the end of the queue.

CSLCO

Channel Systems (FIFO): Motivations

Communication:

- Send a message *m* on c: c!*m*
- Receive a message c?m, only if m was at the end of the queue.

For this talk: only one channel, and one component.

Lossiness assumption

Lossiness assumption

Lossiness assumption

Lossiness assumption

0

0

Lossiness assumption

Subword-ordering \leq is a well-quasi order [FS01]

Definition ([FS01])

 (S, \leq) is a well-quasi-order (WQO) if: $\forall (s_i)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i < j : s_i \leq s_j$

Subword-ordering \leq is a well-quasi order [FS01]

Definition ([FS01])

 (S, \leq) is a well-quasi-order (WQO) if: $\forall (s_i)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i < j : s_i \leq s_j$ (S, \rightarrow, \leq) is a well-structured transition system:

$$egin{array}{ccc} t \ \forall s,s',t, & extsf{Y} \ s \longrightarrow s' \end{array}$$

Subword-ordering ≤ is a well-quasi order [FS01]

Definition ([FS01])

 (S, \leq) is a well-quasi-order (WQO) if: $\forall (s_i)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i < j : s_i \leq s_j$ (S, \rightarrow, \leq) is a well-structured transition system:

$$t \longrightarrow t'^{\exists} \quad a.k.a. \operatorname{Pre}(s) = \{t \mid s \to t\} \text{ preserves } \leq \text{-closed sets}$$

$$\forall s, s', t, \quad \forall i \quad \forall i \quad s \quad s'$$

Subword-ordering ≤ is a well-quasi order [FS01]

Definition ([FS01])

 (S, \leq) is a well-quasi-order (WQO) if: $\forall (s_i)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i < j : s_i \leq s_j$ (S, \rightarrow, \leq) is a well-structured transition system:

$$t \longrightarrow t'^{\exists} \qquad \text{a.k.a. } \operatorname{Pre}(s) = \{t \mid s \to t\} \text{ preserves } \preceq \text{-closed sets}$$
$$\forall s, s', t, \quad \forall i \qquad \forall i \\ s \longrightarrow s'$$

backward reachability scheme [FS01] for non-deterministic schedulers:

$$\bigcup_{n\geq 0} \operatorname{Pre}^{n}(R) = \{ s \mid \exists (s_{n}) : s = s_{0} \to s_{1} \to \dots s_{k} \in R \} = \llbracket \mathrm{E}(\Diamond R) \rrbracket$$

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S, Pr). **Local lossiness assumption**: at every step, there is a positive probability $\lambda \in (0,1)$, that a letter in the channel is dropped. Every message drop event is **independent** from the others.

 \xrightarrow{c} abc

CSLCO

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S, Pr). **Local lossiness assumption**: at every step, there is a positive probability $\lambda \in (0,1)$, that a letter in the channel is dropped. Every message drop event is **independent** from the others.

CSLCO

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S, Pr). **Local lossiness assumption**: at every step, there is a positive probability $\lambda \in (0,1)$, that a letter in the channel is dropped. Every message drop event is **independent** from the others.

Qualitative setting: $[NZ(\Diamond R)] = \{s \mid \Pr(s \to s' \in R) > 0\} \quad [AS(\Diamond R)] = \{s \mid \Pr(s \to s' \in R) = 1\}$ 7/19

Stochastic Concurrent Finite Games

Concurrent Game on a Finite graph

• Finite Game Graph Played by multiple agents

Actions are played concurrently

Concurrent Game on a Finite graph

• Finite Game Graph Played by multiple agents

- Actions are played concurrently
- We Also: stochastic transitions (players and environment)

- Finite Game Graph Played by multiple agents
- Actions are played concurrently
- We Also: stochastic transitions (players and environment)
- Simple Objectives: **Reachability**, <u>Safety</u>, Büchi, CoBüchi: Ex: \Diamond w_1 , \Box { w_2 }, \Box \Diamond s_1 , \Diamond \Box { t_1 , t_2 }

- Finite Game Graph Played by multiple agents
- Actions are played concurrently
- We Also: stochastic transitions (players and environment)
- Simple Objectives: Reachability, Safety, Büchi, CoBüchi:
 - $\mathsf{Ex:} \Diamond w_1 , \Box \{ w_2 \}, \Box \Diamond s_1 , \Diamond \Box \{ t_1 , t_2 \}$
- Evaluated Qualitatively: almost surely, Pr(...) = 1 (AS) or with positive probability Pr(...) > 0 (NZ).

Different Ways of Winning

Players play strategies:

$$\forall i \in \text{Agt}, \ \sigma_i : \underbrace{\textbf{S}_0 \quad \textbf{S}_1 \quad \dots \quad \textbf{S}_n}_{\text{history } \in S^+} \mapsto \delta \in \text{Dist}(\text{Act}_i(\textbf{S}_n))$$

Different Ways of Winning

Players play strategies:

$$\forall i \in \text{Agt}, \ \sigma_i : \underbrace{\begin{array}{c} s_0 \\ \text{history } \in S^+ \end{array}}_{\text{history } \in S^+} \mapsto \delta \in \text{Dist}(\underbrace{\text{Act}_i(\begin{array}{c} s_n \\ s_n \end{array})}_{\text{allowed actions in last state}})$$

• **Zero-sum** case for two players, we compute the winning regions: $[NZ(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) > 0\}$ $[AS(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) = 1\}$

Different Ways of Winning

Players play strategies:

$$\forall i \in \text{Agt}, \ \sigma_i : \underbrace{\begin{array}{c} s_0 \\ \text{history } \in S^+ \end{array}}_{\text{history } \in S^+} \mapsto \delta \in \text{Dist}(\underbrace{\text{Act}_i(\begin{array}{c} s_n \\ s_n \end{array})}_{\text{allowed actions in last state}})$$

- **Zero-sum** case for two players, we compute the winning regions: $[NZ(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) > 0\}$ $[AS(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) = 1\}$
- For n players with objectives (Φ_i)_{i∈Agt} and a specification Γ, we consider the Rational Verification problem:

Does there exists $\vec{\sigma}$ in the core satisfying Γ ?

Different Ways of Winning

Players play strategies:

$$\forall i \in \text{Agt}, \ \sigma_i : \underbrace{\begin{array}{c} s_0 \\ \text{history } \in S^+ \end{array}}_{\text{history } \in S^+} \mapsto \delta \in \text{Dist}(\underbrace{\text{Act}_i(\begin{array}{c} s_n \\ s_n \end{array})}_{\text{allowed actions in last state}})$$

- **Zero-sum** case for two players, we compute the winning regions: $[NZ(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) > 0\}$ $[AS(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) = 1\}$
- For n players with objectives (Φ_i)_{i∈Agt} and a specification Γ, we consider the Rational Verification problem:

Does there exists $\vec{\sigma}$ in the core satisfying Γ ? Do all $\vec{\sigma}$ in the core satisfy Γ ?

Different Ways of Winning

Players play strategies:

$$\forall i \in \text{Agt}, \ \sigma_i : \underbrace{\begin{array}{c} \mathbf{s_0} & \mathbf{s_1} \\ \text{history } \in S^+ \end{array}}_{\text{history } \in S^+} \mapsto \delta \in \text{Dist}(\underbrace{\text{Act}_i(\ \mathbf{s_n} \)}_{\text{allowed actions in last state}})$$

- **Zero-sum** case for two players, we compute the winning regions: $[NZ(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) > 0\}$ $[AS(\varphi_1)]_1 = \{s \mid \exists \sigma_1 : \forall \sigma_2, \Pr^{\sigma_1, \sigma_2}(\varphi_1) = 1\}$
- For *n* players with objectives $(\Phi_i)_{i \in Agt}$ and a specification Γ , we consider the **Rational Verification** problem:

E-CORE: Does there exists $\vec{\sigma}$ in the core satisfying Γ ?

A-CORE: Do all $\vec{\sigma}$ in the core satisfy Γ ?

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

 $\frac{\text{Recipe for } [\![NZ(\Diamond R)]\!]_1}{\text{Take } X := R}$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, <u>Reachability Objective</u> for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

 $\frac{\text{Recipe for } [\![NZ(\Diamond R)]\!]_1}{\text{Take } X := R}$

// Add to X any state that 1 can enforce // reaching with positive probability $X := X \cup Pre_1(X)$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

 $\frac{\text{Recipe for } [\![NZ(\Diamond R)]\!]_1}{\text{Take } X := R}$

// Add to X any state that 1 can enforce // reaching with positive probability $X := X \cup Pre_1(X)$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

 $\begin{array}{l} & \underline{\operatorname{Recipe \ for \ } [\![NZ(\Diamond R)]\!]_1} \\ \hline \text{Take } X := R \\ & \\ & \\ & \\ \hline \text{Repeat until convergence:} \\ & // \ \text{Add to } X \ \text{any state that } 1 \ \text{can enforce} \\ & \\ & // \ \text{reaching with positive probability} \\ & \\ & X := X \cup \operatorname{Pre}_1(X) \end{array}$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

 $\begin{array}{l} & \underline{\operatorname{Recipe \ for \ } [\![NZ(\Diamond R)]\!]_1} \\ \hline \text{Take $X := R$} \\ & \\ & \\ & \\ \hline \text{Repeat until convergence:} \\ & // \ \text{Add to X any state that 1 can enforce} \\ & // \ \text{reaching with positive probability} \\ & \\ & X := X \cup \operatorname{Pre}_1(X) \end{array}$

 \rightsquigarrow By **determinacy**, we can compute $[AS(\Box R)]_2$.

How about Almost-Sure Reachability?

Recipe for $[AS(\Diamond R)]_1$

How about Almost-Sure Reachability?

Recipe for $[AS(\Diamond R)]_1$

// Where can we force **positive probability**? $Y := [NZ(\Diamond R)]_1$

How about Almost-Sure Reachability?

Recipe for $[AS(\Diamond R)]_1$ // Where can we force **positive probability**? $Y := [NZ(\Diamond R)]_1$

How about Almost-Sure Reachability?

How about Almost-Sure Reachability?

 $\begin{array}{l} \hline \text{Recipe for } [\![AS(\Diamond R)]\!]_1 \\ \hline // \text{ Where can we force$ **positive probability** $?} \\ Y := [\![NZ(\Diamond R)]\!]_1 \\ \hline // \text{ Now, stay safe in this set} \\ X := [\![AS(\Box Y)]\!]_1 \\ \hline // & \frown \text{Remove actions losing for } AS(\Box Y) \\ \hline \forall s \text{ Act}_1(s) := \{\alpha \in \text{Act}_1(s) \mid \exists \beta : p(s, (\alpha, \beta), Y) < 1\} \\ \hline \text{Repeat until convergence} \end{array}$

How about Almost-Sure Reachability?

Recipe for $[AS(\Diamond R)]_1$ // Where can we force positive probability? $Y := [NZ(\Diamond R)]_1$ // Now, stay safe in this set $X := [AS(\Box Y)]_1$ // \triangle Remove actions losing for $AS(\Box Y)$ \triangle $\forall s \operatorname{Act}_1(s) := \{\alpha \in \operatorname{Act}_1(s) \mid \exists \beta : p(s, (\alpha, \beta), Y) < 1\}$ Repeat until convergence \rightsquigarrow By determinacy, we can compute $[NZ(\Box R)]_2$.

Example: Skirmish Game Analysis

• Step 1:
$$Y = X = \{ 50 , 5w \}$$
.

Example: Skirmish Game Analysis

• Step 1:
$$Y = X = \{ s_0, s_w \}$$
.
But action *r* is losing.

Example: Skirmish Game Analysis

• Step 2:
$$Y = X = \{ s_w \} = [AS(\Diamond s_w)]_1$$
.

Example: Skirmish Game Analysis

- Step 1: $Y = X = \{ s_0, s_w \}$. But action *r* is losing.
- Step 2: $Y = X = \{ s_w \} = [AS(\Diamond s_w)]_1$.

Some remarks:

- $\forall \epsilon > 0$; Player 1 can "win" with probability 1ϵ ,
- For any **finite memory** strategy σ_2 , player 1 can go to s_w almost-surely.
- Still, **Player 2** wins this game but with an **infinite memory strategy**.

Example: Skirmish Game Analysis

- Step 1: $Y = X = \{ s_0, s_w \}$. But action *r* is losing.
- Step 2: $Y = X = \{ s_w \} = [AS(\Diamond s_w)]_1.$

Some remarks:

- $\forall \epsilon > 0$; Player 1 can "win" with probability 1ϵ ,
- For any **finite memory** strategy σ_2 , player 1 can go to s_w almost-surely.
- Still, **Player 2** wins this game but with an **infinite memory strategy**.

$$\forall n, \sigma_2(\underbrace{s_0 \dots s_0}_{n \text{ times}})[s] = \left(\frac{1}{2}\right)^{2^{-n}}$$

Concurrent Games + Lossy Channel Systems

Concurrent Games + Lossy Channel Systems = Infinite State Games

CSLCG: Def by Example

From $s = 1 \cdot w$:

- Pick an action for every player, then take the corresponding $I \xrightarrow{f} I'$
- \bigcirc Change location to I';
- Apply the channel operation f on w to get w';
- Drop from w' to $w'' \leq w'$: subword ordering.

Result:
$$s' = l' \cdot w''$$
:

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

CSLC<u>G</u>

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

- $\operatorname{Pre}_i(X) = \{s \mid i \text{ can enforce reaching } X \text{ in one step with pp.} \}.$
- Pre; is **computable** for regular sets.
- Termination: Thanks to WQO's property [FS01].
- Correctness: Finite Attractor property [BBS06].

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

- $\operatorname{Pre}_i(X) = \{s \mid i \text{ can enforce reaching } X \text{ in one step with pp.} \}.$
- Pre; is **computable** for regular sets.
- Termination: Thanks to WQO's property [FS01].
- Correctness: Finite Attractor property [BBS06].

Theorem

Let $R \subseteq L \cdot M^*$ a **regular** set of configurations. One can compute the set of winning configurations:

- **Positive P.** Reachability: $[NZ(\Diamond R)]_1$;
- Almost Sure Reachability: $[AS(\Diamond R)]_1$;

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

- $\operatorname{Pre}_i(X) = \{s \mid i \text{ can enforce reaching } X \text{ in one step with pp.} \}.$
- Pre; is **computable** for regular sets.
- Termination: Thanks to WQO's property [FS01].
- Correctness: Finite Attractor property [BBS06].

Theorem

Let $R \subseteq L \cdot M^*$ a **regular** set of configurations. One can compute the set of winning configurations:

- **Positive P.** Reachability: $[NZ(\Diamond R)]_1$; Almost sure Safety: $[AS(\Box R)]_1$;
- Almost Sure Reachability: $[AS(\Diamond R)]_1$; Positive P. Safety: $[NZ(\Box R)]_1$;

Contribution 2: Conjunction of Objectives

Theorem

Let Φ be a conjunction of NZ and AS objectives for safety and reachability path specifications. Then the winning region $[\![\Phi]\!]_i$ is computable.

 \rightsquigarrow More in the paper: how to represent/combine winning strategies with possibly infinite memory (case NZ(\Box ...)) with infinite state space.

Contribution 2: Conjunction of Objectives

Theorem

Let Φ be a conjunction of NZ and AS objectives for safety and reachability path specifications. Then the winning region $[\![\Phi]\!]_i$ is computable.

 \rightsquigarrow More in the paper: how to represent/combine winning strategies with possibly infinite memory (case NZ(\Box ...)) with infinite state space.

NB: It is the "maximal" possible result:

Bertrand and al [BBS07] proves that NZ($\Box \Diamond R$) (Büchi) and AS($\Box \Diamond R_1 \land \Diamond \Box R_2$) cases are undecidable.

[May03] proved that $[E(\Box R)]_1$ cannot be computed.

Contribution 3: Core

Theorem

For a pair (\mathcal{G}, Γ) where players' objectives are almost-sure reachability or almost-sure safety objectives, and property $\Gamma = AS(\varphi)$ with φ of the form $\bigwedge_i \Diamond R_i$, $\bigwedge_i \Box R_i$, or $\bigwedge_i \Box \Diamond R_i$, the problems of E-Core and A-Core are decidable.

Contribution 3: Core

Theorem

For a pair (\mathcal{G}, Γ) where players' objectives are almost-sure reachability or almost-sure safety objectives, and property $\Gamma = AS(\varphi)$ with φ of the form $\bigwedge_i \Diamond R_i$, $\bigwedge_i \Box R_i$, or $\bigwedge_i \Box \Diamond R_i$, the problems of E-Core and A-Core are decidable.

- Guess the set of winning players $W \subseteq Agt$;
- Check that the 1.5-player game of Agt vs \emptyset is winning for the conjunction:

$$\Gamma \wedge \bigwedge_{i \in W} \mathrm{AS}(\varphi_i) \wedge \bigwedge_{i \notin W} \mathrm{NZ}(\neg \varphi_i)$$

• For all $C \subseteq \overline{W}$, check that C against \overline{C} is losing.

Contribution 3: Core

Theorem

For a pair (\mathcal{G}, Γ) where players' objectives are almost-sure reachability or almost-sure safety objectives, and property $\Gamma = AS(\varphi)$ with φ of the form $\bigwedge_i \Diamond R_i$, $\bigwedge_i \Box R_i$, or $\bigwedge_i \Box \Diamond R_i$, the problems of E-Core and A-Core are <u>decidable</u>.

- Guess the set of winning players $W \subseteq Agt$;
- Check that the 1.5-player game of Agt vs \emptyset is winning for the conjunction:

$$\Gamma \wedge \bigwedge_{i \in W} \mathrm{AS}(\varphi_i) \wedge \bigwedge_{i \notin W} \mathrm{NZ}(\neg \varphi_i)$$

• For all $C \subseteq \overline{W}$, check that C against \overline{C} is losing.

NB: "maximal" result since Büchi+coBüchi objectives make the problem undecidable [BBS07].

Summary and future work

- Rational Verification problem on infinite state still decidable;
- Qualitative Objectives for Stochastic Equilibria;
- 📓 vs 🀲: The probabilistic setting is more computable than the ND one.

Summary and future work

- Rational Verification problem on infinite state still decidable;
- Qualitative Objectives for Stochastic Equilibria;
- 🕱 vs 🐲: The probabilistic setting is more computable than the ND one.

Future work:

- Restrictions on the strategy classes (FM only?);
- Nash Equilibria;
- Partial observation (Signal Games).

Summary and future work

- Rational Verification problem on infinite state still decidable;
- Qualitative Objectives for Stochastic Equilibria;
- 📓 vs 🐲: The probabilistic setting is more computable than the ND one.

Future work:

- Restrictions on the strategy classes (FM only?);
- Nash Equilibria;
- Partial observation (Signal Games).

Thank you for your attention

- [AABN18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. A load-buffer semantics for total store ordering. Logical Methods in Computer Science, 14(1), 2018.
 - [BBS06] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. A note on the attractor-property of infinite-state markov chains. Inf. Process. Lett., 97(2):58–63, 2006.
 - [BBS07] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Verifying nondeterministic probabilistic channel systems against ω -regular linear-time properties. ACM Trans. Comput. Log., 9(1):5, 2007.
- [dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. <u>Theor.</u> <u>Comput. Sci., 386(3):188–217, 2007.</u>
 - [FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! <u>Theor.</u> Comput. Sci., 256(1-2):63–92, 2001.
 - [May03] Richard Mayr. Undecidable problems in unreliable computations. <u>Theor. Comput. Sci.</u>, 297(1-3):337–354, 2003.

$$\sigma_i: S^+ \to \text{Dist}(\text{Act})$$

• Determistic: only one action with probability 1;

 $\forall h \in S^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

$$\sigma_i: S^+ \to \text{Dist}(\text{Act})$$

• Determistic: only one action with probability 1;

 $\forall h \in S^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

• Positional: depends only on the current state;

$$\forall h \in S^*, \forall s \in S^+, \sigma_i(h \cdot s) = \sigma_i(s)$$

$$\sigma_i: S^+ \to \text{Dist}(\text{Act})$$

• Determistic: only one action with probability 1;

 $\forall h \in S^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

• Positional: depends only on the current state;

$$\forall h \in S^*, \forall s \in S^+, \sigma_i(h \cdot s) = \sigma_i(s)$$

$$\sigma_i: S^+ \to \text{Dist}(\text{Act})$$

• Determistic: only one action with probability 1;

 $\forall h \in S^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

• Positional: depends only on the current state;

$$\forall h \in S^*, \forall s \in S^+, \sigma_i(h \cdot s) = \sigma_i(s)$$

Can't we just play with **DP** strategies only?

A strategy for player *i* is: $\sigma_i : (L \cdot M^*)^+ \rightarrow \text{Dist}(\text{Act})$

• Determistic: only one action with probability 1;

 $\forall h \in (L \cdot M^*)^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

A strategy for player *i* is: $\sigma_i : (L \cdot M^*)^+ \rightarrow \text{Dist}(\text{Act})$

• Determistic: only one action with probability 1;

 $\forall h \in (L \cdot M^*)^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

• Positional: depends only on the current state;

 $\forall h \in (L \cdot M^*)^*, \forall s \in L \cdot M^*, \sigma_i(h \cdot s) = \sigma_i(s)$

A strategy for player *i* is: $\sigma_i : (L \cdot M^*)^+ \rightarrow \text{Dist}(\text{Act})$

• Determistic: only one action with probability 1;

 $\forall h \in (L \cdot M^*)^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

• Positional: depends only on the current state;

$$\forall h \in (L \cdot M^*)^*, \forall s \in L \cdot M^*, \sigma_i(h \cdot s) = \sigma_i(s)$$

• Finite Memory: the distribution of actions can be computed by a finite automaton. $\forall \delta \in \text{Dist}(\text{Act}), \{h \in (L \cdot M^*)^+ \mid \sigma_i(h) = \delta\}$ is a regular set

and the set of possible distributions is finite.

A strategy for player *i* is: $\sigma_i : (L \cdot M^*)^+ \rightarrow \text{Dist}(\text{Act})$

• Determistic: only one action with probability 1;

 $\forall h \in (L \cdot M^*)^+, \exists \alpha : \sigma_i(h)[\alpha] = 1$

• Positional: depends only on the current state;

$$\forall h \in (L \cdot M^*)^*, \forall s \in L \cdot M^*, \sigma_i(h \cdot s) = \sigma_i(s)$$

 $\, \odot \,$ Finite Memory: the distribution of actions can be computed by a finite automaton.

 $\forall \delta \in \text{Dist}(\text{Act}), \{h \in (L \cdot M^*)^+ \mid \sigma_i(h) = \delta\}$ is a regular set

and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.

A strategy for player *i* is Counting: if there exist two PFM strategies σ^{u}, σ^{v} such that:

$$\forall n \ge 1, \forall h \in S^n, \sigma(h) = p_n \cdot \sigma^u(h) + (1 - p_n)\sigma^v(h)$$

Where:

$$p_n = 2^{-1/(2^k)}$$

Counting strategies are sufficient for winning $NZ(\Box \cdots)$.

 $A_1(s_0) = \{h, r\}$

 $A_2(s_0) = \{s, w\}$

Played:

 $A_1(s_0) = \{h, r\}$

$$A_2(s_0) = \{s, w\}$$

Played: hw

$$A_1(s_0) = \{h, r\}$$

$$A_2(s_0) = \{s, w\}$$

Played: rs

$$A_2(s_0) = \{s, w\}$$

5 / 5

$$A_1(s_0) = \{h, r\}$$

$$A_2(s_0) = \{s, w\}$$

Played: rs

$$A_1(s_0) = \{h, r\}$$

$$A_2(s_0) = \{s, w\}$$

Played: rw

 $A_2(s_0) = \{s, w\}$

Played: rw

ο

 $A_2(s_0) = \{s, w\}$

Played: rw

$$A_1(s_0) = \{h, r\}$$

$$A_2(s_0) = \{s, w\}$$

Played: hs
Skirmish Game [dAHK07]

ο

 $A_1(s_0) = \{h, r\}$

$$A_2(s_0) = \{s, w\}$$

Played: hs

Skirmish Game [dAHK07]

ο

 $A_1(s_0) = \{h, r\}$

 $A_2(s_0) = \{s, w\}$

Played: hs