Concurrent Stochastic Lossy Channel Games

Daniel Stan

EPITA Research Lab ${ }^{1}$, France

February 21, 2024
joint work with Muhammad Najib ${ }^{2}$, Anthony W. Lin ${ }^{3,4}$,

Parosh Abdulla ${ }^{5}$
${ }^{3}$ RPTU ${ }^{4}$

5
UPPSALA
UNIVERSITET

Outline

- Lossy Channel Systems
- Finite Concurrent Games
- Infinite Concurrent Games

Channel Systems

Channel Systems (FIFO): Motivations

Modelisation and verification of systems with:

- Network transmissions;
- Transactional operations;
- TSO semantics [AABN18]

Channel Systems (FIFO): Motivations

Communication:

- Send a message m on \mathfrak{c} : $!m$
- Receive a message \mathfrak{c} ? m, only if m was at the end of the queue.

Channel Systems (FIFO): Motivations

Communication:

- Send a message m on \mathfrak{c} : $!m$
- Receive a message \mathfrak{c} ? m, only if m was at the end of the queue.

For this talk: only one channel, and one component.

Lossiness assumption

Assumption: at every round, every message may disappear.
\qquad

Lossiness assumption

Assumption: at every round, every message may disappear.

Lossiness assumption

Assumption: at every round, every message may disappear.

Lossiness assumption

Assumption: at every round, every message may disappear.

Lossiness assumption

Assumption: at every round, every message may disappear.

Effect of a transition $I \xrightarrow{f} I^{\prime}$ on state $s=I \cdot w$:

- Change location to $I^{\prime \prime}$;
- Apply the channel operation f on w to get w^{\prime};
- Drop from w^{\prime} to $w^{\prime \prime} \leq w^{\prime}$: subword ordering.

Result: $s^{\prime}=I^{\prime} \cdot w^{\prime \prime}$:

Subword-ordering \leq is a well-quasi order [FS01]

Definition ([FS01])

(S, \leq) is a well-quasi-order (WQO) if: $\forall\left(s_{i}\right)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i<j: s_{i} \leq s_{j}$

Definition ([FS01])

(S, \preceq) is a well-quasi-order (WQO) if: $\forall\left(s_{i}\right)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i<j: s_{i} \leq s_{j}$ (S, \rightarrow, \leq) is a well-structured transition system:

$$
\begin{array}{lc}
& t \\
& s, s^{\prime}, t, \\
& \mathrm{VI} \\
& s \longrightarrow s^{\prime}
\end{array}
$$

Definition ([FS01])

(S, \preceq) is a well-quasi-order (WQO) if: $\forall\left(s_{i}\right)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i<j: s_{i} \leq s_{j}$ (S, \rightarrow, \leq) is a well-structured transition system:

$$
t \longrightarrow t^{\exists} \quad \text { a.k.a. } \operatorname{Pre}(s)=\{t \mid s \rightarrow t\} \text { preserves } \preceq \text {-closed sets }
$$

Subword-ordering \leq is a well-quasi order [FS01]

Definition ([FS01])

(S, \preceq) is a well-quasi-order (WQO) if: $\forall\left(s_{i}\right)_{i \in \mathbb{N}} \in S^{\mathbb{N}}, \exists i<j: s_{i} \leq s_{j}$ (S, \rightarrow, \leq) is a well-structured transition system:

$$
\begin{array}{ll}
& t \longrightarrow t^{\exists} \\
\forall s, s^{\prime}, t, & \mathrm{VI} \\
& s \longrightarrow s^{\prime}
\end{array} \quad \text { a.k.a. } \operatorname{Pre}(s)=\{t \mid s \rightarrow t\} \text { preserves } \preceq \text {-closed sets }
$$

backward reachability scheme [FS01] for non-deterministic schedulers:

$$
\bigcup_{n \geq 0} \operatorname{Pre}^{n}(R)=\left\{s \mid \exists\left(s_{n}\right): s=s_{0} \rightarrow s_{1} \rightarrow \ldots s_{k} \in R\right\}=\llbracket \mathrm{E}(\diamond R) \rrbracket
$$

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S, Pr).
Local lossiness assumption: at every step, there is a positive probability $\lambda \in(0,1)$, that a letter in the channel is dropped. Every message drop event is independent from the others.
$\xrightarrow{\substack{\mathfrak{c}}}$

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S, Pr).
Local lossiness assumption: at every step, there is a positive probability $\lambda \in(0,1)$, that a letter in the channel is dropped. Every message drop event is independent from the others.

Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S, Pr).
Local lossiness assumption: at every step, there is a positive probability $\lambda \in(0,1)$, that a letter in the channel is dropped. Every message drop event is independent from the others.

Qualitative setting:
$\llbracket \mathrm{NZ}(\diamond R) \rrbracket=\left\{s \mid \operatorname{Pr}\left(s \rightarrow^{*} s^{\prime} \in R\right)>0\right\} \quad \llbracket \operatorname{AS}(\diamond R) \rrbracket=\left\{s \mid \operatorname{Pr}\left(s \rightarrow^{*} s^{\prime} \in R\right)=1\right\}$

Stochastic Concurrent Finite Games

Concurrent Game on a Finite graph

Concurrent Game on a Finite graph

- Finite Game Graph Played by multiple agents
- Actions are played concurrently

Concurrent Game on a Finite graph

- Finite Game Graph Played by multiple agents
- Actions are played concurrently
- Also: stochastic transitions (players and environment)

Concurrent Game on a Finite graph

- Finite Game Graph Played by multiple agents
- Actions are played concurrently
- Also: stochastic transitions (players and environment)
- Simple Objectives:

Reachability, Safety, Büchi, CoBüchi:
Ex: $\diamond w_{1}, \square\left\{w_{2}\right\}, \square \diamond s_{1}, \diamond \square\left\{t_{1}, t_{2}\right\}$

Concurrent Game on a Finite graph

- Finite Game Graph Played by multiple agents
- Actions are played concurrently
- Also: stochastic transitions (players and environment)
- Simple Objectives:

Reachability, Safety, Büchi, CoBüchi:
Ex: $\diamond w_{1}, \square\left\{w_{2}\right\}, \square \diamond s_{1}, \diamond \square\left\{t_{1}, t_{2}\right\}$

- Evaluated Qualitatively: almost surely, $\operatorname{Pr}(\ldots)=1$ (AS) or with positive probability $\operatorname{Pr}(\ldots)>0(N Z)$.

Different Ways of Winning

Players play strategies:

$$
\forall i \in \text { Agt, } \sigma_{i}: \underbrace{\begin{array}{|cccc}
s_{0} & s_{1} & \ldots & s_{n}
\end{array} \mapsto \delta \in \operatorname{Dist}(\underbrace{\operatorname{Act}_{i}\left(s_{n}\right)}_{\text {allowed actions in last state }})}_{\text {history } \in S^{+}}
$$

Different Ways of Winning

Players play strategies:

$$
\forall i \in \text { Agt, } \sigma_{i}: \underbrace{\begin{array}{|ccccc}
s_{0} & s_{1} & \ldots & s_{n}
\end{array} \mapsto \delta \in \operatorname{Dist}(\underbrace{\operatorname{Act}_{i}\left(s_{n}\right)}_{\text {allowed actions in last state }})}_{\text {history } \in S^{+}}
$$

- Zero-sum case for two players, we compute the winning regions:

$$
\llbracket \mathrm{NZ}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)>0\right\}
$$

$$
\llbracket \operatorname{AS}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)=1\right\}
$$

Different Ways of Winning

Players play strategies:

$$
\forall i \in \text { Agt, } \sigma_{i}: \underbrace{\begin{array}{|ccccc}
s_{0} & s_{1} & \ldots & s_{n}
\end{array} \mapsto \delta \in \operatorname{Dist}(\underbrace{\operatorname{Act}_{i}\left(s_{n}\right)}_{\text {allowed actions in last state }})}_{\text {history } \in S^{+}}
$$

- Zero-sum case for two players, we compute the winning regions: $\llbracket \mathrm{NZ}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)>0\right\}$ $\llbracket \operatorname{AS}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)=1\right\}$
- For n players with objectives $\left(\Phi_{i}\right)_{i \in \mathrm{Agt}}$ and a specification Γ, we consider the Rational Verification problem:

Does there exists $\vec{\sigma}$ in the core satisfying Γ ?

Different Ways of Winning

Players play strategies:

$$
\forall i \in \text { Agt, } \sigma_{i}: \underbrace{\begin{array}{|ccccc}
s_{0} & s_{1} & \ldots & s_{n}
\end{array} \mapsto \delta \in \operatorname{Dist}(\underbrace{\operatorname{Act}_{i}\left(s_{n}\right)}_{\text {allowed actions in last state }})}_{\text {history } \in S^{+}}
$$

- Zero-sum case for two players, we compute the winning regions: $\llbracket \mathrm{NZ}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)>0\right\}$ $\llbracket \operatorname{AS}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)=1\right\}$
- For n players with objectives $\left(\Phi_{i}\right)_{i \in \text { Agt }}$ and a specification Γ, we consider the Rational Verification problem:

Does there exists $\vec{\sigma}$ in the core satisfying Γ ?
Do all $\vec{\sigma}$ in the core satisfy Γ ?

Different Ways of Winning

Players play strategies:

$$
\forall i \in \text { Agt, } \sigma_{i}: \underbrace{\begin{array}{|cccc}
s_{0} & s_{1} & \ldots & s_{n}
\end{array} \mapsto \delta \in \operatorname{Dist}(\underbrace{\operatorname{Act}_{i}\left(s_{n}\right)}_{\text {allowed actions in last state }})}_{\text {history } \in S^{+}}
$$

- Zero-sum case for two players, we compute the winning regions: $\llbracket \mathrm{NZ}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)>0\right\}$ $\llbracket \operatorname{AS}\left(\varphi_{1}\right) \rrbracket_{1}=\left\{s \mid \exists \sigma_{1}: \forall \sigma_{2}, \operatorname{Pr}^{\sigma_{1}, \sigma_{2}}\left(\varphi_{1}\right)=1\right\}$
- For n players with objectives $\left(\Phi_{i}\right)_{i \in \text { Agt }}$ and a specification Γ, we consider the Rational Verification problem:
E-CORE: Does there exists $\vec{\sigma}$ in the core satisfying Γ ?
A-CORE: Do all $\vec{\sigma}$ in the core satisfy Γ ?

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

$$
\frac{\text { Recipe for } \llbracket \mathrm{NZ}(\triangle R) \rrbracket_{1}}{\text { Take } X:=R}
$$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

$$
\frac{\text { Recipe for } \llbracket \mathrm{NZ}(\triangle R) \rrbracket_{1}}{\text { Take } X:=R}
$$

// Add to X any state that 1 can enforce
// reaching with positive probability $X:=X \cup \operatorname{Pre}_{1}(X)$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

$\frac{\text { Recipe for } \llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}}{\text { Take } X:=R}$
// Add to X any state that 1 can enforce
// reaching with positive probability $X:=X \cup \operatorname{Pre}_{1}(X)$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

Recipe for $\llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}$
Take $X:=R$
Repeat until convergence:
// Add to X any state that 1 can enforce
// reaching with positive probability
$X:=X \cup \operatorname{Pre}_{1}(X)$

Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set $R \subseteq S$ of states. How to compute the winning set for player 1?

Recipe for $\llbracket \mathrm{NZ}(\triangle R) \rrbracket_{1}$
Take $X:=R$
Repeat until convergence:
// Add to X any state that 1 can enforce
// reaching with positive probability
$X:=X \cup \operatorname{Pre}_{1}(X)$
\rightsquigarrow By determinacy, we can compute $\llbracket \mathrm{AS}(\square R) \rrbracket_{2}$.

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

Recipe for $\llbracket \mathrm{AS}(\diamond R) \rrbracket_{1}$

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

Recipe for $\llbracket \mathrm{AS}(\triangle R) \rrbracket_{1}$
// Where can we force positive probability? $Y:=\llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}$

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

Recipe for $\llbracket \mathrm{AS}(\diamond R) \rrbracket_{1}$
// Where can we force positive probability? $Y:=\llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}$

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

Recipe for $\llbracket \mathrm{AS}(\diamond R) \rrbracket_{1}$
// Where can we force positive probability?
$Y:=\left[\mathrm{NZ}(\diamond R) \rrbracket_{1}\right.$
// Now, stay safe in this set
$X:=\llbracket \operatorname{AS}(\square Y) \rrbracket_{1}$

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

Recipe for $\llbracket \mathrm{AS}(\triangle R) \rrbracket_{1}$
// Where can we force positive probability?
$Y:=\llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}$
// Now, stay safe in this set
$X:=\llbracket \operatorname{AS}(\square Y) \rrbracket_{1}$
// 仓Remove actions losing for $\operatorname{AS}(\square Y) \triangleq$
$\forall s \operatorname{Act}_{1}(s):=\left\{\alpha \in \operatorname{Act}_{1}(s) \mid \exists \beta: p(s,(\alpha, \beta), Y)<1\right\}$
Repeat until convergence

Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

Recipe for $\llbracket \mathrm{AS}(\triangle R) \rrbracket_{1}$
// Where can we force positive probability?
$Y:=\left[\mathrm{NZ}(\diamond R) \rrbracket_{1}\right.$
// Now, stay safe in this set
$X:=\llbracket \operatorname{AS}(\square Y) \rrbracket_{1}$
// 仓Remove actions losing for $\operatorname{AS}(\square Y) \triangleq$
$\forall s \operatorname{Act}_{1}(s):=\left\{\alpha \in \operatorname{Act}_{1}(s) \mid \exists \beta: p(s,(\alpha, \beta), Y)<1\right\}$
Repeat until convergence
\rightsquigarrow By determinacy, we can compute $\left[\mathrm{NZ}(\square R) \rrbracket_{2}\right.$.

Example: Skirmish Game Analysis

- Step 1: $Y=X=\left\{s_{0}, s_{w}\right\}$.

Example: Skirmish Game Analysis

- Step 1: $Y=X=\left\{s_{0}, s_{w}\right\}$. But action r is losing. ©

Example: Skirmish Game Analysis

- Step 1: $Y=X=\left\{s_{0}, s_{w}\right\}$. But action r is losing. ©
- Step 2: $Y=X=\left\{s_{w}\right\}=\llbracket \operatorname{AS}\left(\diamond s_{w}\right) \rrbracket_{1}$.

Example: Skirmish Game Analysis

- Step 1: $Y=X=\left\{s_{0}, s_{w}\right\}$. But action r is losing. ©
- Step 2: $Y=X=\left\{s_{w}\right\}=\llbracket \operatorname{AS}\left(\diamond s_{w}\right) \rrbracket_{1}$.

Some remarks:

- $\forall \epsilon>0$; Player 1 can "win" with probability $1-\epsilon$,
- For any finite memory strategy σ_{2}, player 1 can go to s_{w} almost-surely.
- Still, Player 2 wins this game but with an infinite memory strategy.

Example: Skirmish Game Analysis

- Step 1: $Y=X=\left\{s_{0}, s_{w}\right\}$. But action r is losing. ©
- Step 2: $Y=X=\left\{s_{w}\right\}=\llbracket \operatorname{AS}\left(\diamond s_{w}\right) \rrbracket_{1}$.

Some remarks:

- $\forall \epsilon>0$; Player 1 can "win" with probability $1-\epsilon$,
- For any finite memory strategy σ_{2}, player 1 can go to s_{w} almost-surely.
- Still, Player 2 wins this game but with an infinite memory strategy.

$$
\forall n, \sigma_{2}(\underbrace{s_{0} \ldots s_{0}}_{n \text { times }})[s]=\left(\frac{1}{2}\right)^{2^{-n}}
$$

Concurrent Games + Lossy Channel Systems

Concurrent Games + Lossy Channel Systems Infinite State Games

CSLCG: Def by Example

$a w|a!, b w| b!$

CSLCG: Def by Example

$a w|a!, b w| b!$

CSLCG: Def by Example

CSLCG: Def by Example

CSLCG: Def by Example

CSLCG: Def by Example

$a w|a!, b w| b!$

CSLCG: Def by Example

$a w|a!, b w| b!$

CSLCG: Def by Example

$a w|a!, b w| b!$

CSLCG: Def by Example

$a w|a!, b w| b!$

CSLCG: Def by Example

Sender Attacker
$a w|a!, b w| b!$

From $s=1 \cdot w$:

- Pick an action for every player, then take the corresponding $I \xrightarrow{f} I^{\prime}$
- Change location to I^{\prime};
- Apply the channel operation f on w to get w^{\prime};

Drop from w^{\prime} to $w^{\prime \prime} \leq w^{\prime}$: subword ordering.
Result: $s^{\prime}=I^{\prime} \cdot w^{\prime \prime}$:

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

- $\operatorname{Pre}_{i}(X)=\{s \mid i$ can enforce reaching X in one step with pp. $\}$.
- Pre_{i} is computable for regular sets.
- Termination: Thanks to WQO's property [FS01].
- Correctness: Finite Attractor property [BBS06].

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

- $\operatorname{Pre}_{i}(X)=\{s \mid i$ can enforce reaching X in one step with pp. $\}$.
- Pre_{i} is computable for regular sets.
- Termination: Thanks to WQO's property [FS01].
- Correctness: Finite Attractor property [BBS06].

Theorem

Let $R \subseteq L \cdot M^{*}$ a regular set of configurations. One can compute the set of winning configurations:

- Positive P. Reachability: $\llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}$;
- Almost Sure Reachability: $\llbracket \operatorname{AS}(\diamond R) \rrbracket_{1}$;

Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

- $\operatorname{Pre}_{i}(X)=\{s \mid i$ can enforce reaching X in one step with pp. $\}$.
- Pre_{i} is computable for regular sets.
- Termination: Thanks to WQO's property [FS01].
- Correctness: Finite Attractor property [BBS06].

Theorem

Let $R \subseteq L \cdot M^{*}$ a regular set of configurations. One can compute the set of winning configurations:

- Positive P. Reachability: $\llbracket \mathrm{NZ}(\diamond R) \rrbracket_{1}$; o Almost sure Safety: $\llbracket \operatorname{AS}(\square R) \rrbracket_{1}$;
- Almost Sure Reachability: $\llbracket \operatorname{AS}(\diamond R) \rrbracket_{1}$; 。 Positive P. Safety: $\llbracket \mathrm{NZ}(\square R) \rrbracket_{1}$;

Contribution 2: Conjunction of Objectives

Theorem

Let Φ be a conjunction of NZ and AS objectives for safety and reachability path specifications. Then the winning region $\llbracket \Phi \rrbracket_{i}$ is computable.
\rightsquigarrow More in the paper: how to represent/combine winning strategies with possibly infinite memory (case $\mathrm{NZ}(\square \ldots)$) with infinite state space.

Contribution 2: Conjunction of Objectives

Theorem

Let Φ be a conjunction of NZ and AS objectives for safety and reachability path specifications. Then the winning region $\llbracket \Phi \rrbracket_{i}$ is computable.
\rightsquigarrow More in the paper: how to represent/combine winning strategies with possibly infinite memory (case $\mathrm{NZ}(\square \ldots)$) with infinite state space.

NB: It is the "maximal" possible result:

Bertrand and al [BBS07] proves that $\mathrm{NZ}(\square \diamond R)$ (Büchi) and $\mathrm{AS}\left(\square \diamond R_{1} \wedge \diamond \square R_{2}\right)$ cases are undecidable.
[May03] proved that $\llbracket \mathrm{E}(\square R) \rrbracket_{1}$ cannot be computed.

Contribution 3: Core

Theorem

For a pair (\mathscr{G}, Γ) where players' objectives are almost-sure reachability or almost-sure safety objectives, and property $\Gamma=\operatorname{AS}(\varphi)$ with φ of the form $\wedge_{i} \diamond R_{i}, \wedge_{i} \square R_{i}$, or $\wedge_{i} \square \diamond R_{i}$, the problems of E -Core and A -Core are decidable.

Contribution 3: Core

Theorem

For a pair (\mathscr{G}, Γ) where players' objectives are almost-sure reachability or almost-sure safety objectives, and property $\Gamma=\operatorname{AS}(\varphi)$ with φ of the form $\wedge_{i} \diamond R_{i}, \wedge_{i} \square R_{i}$, or $\Lambda_{i} \square \diamond R_{i}$, the problems of E -Core and A -Core are decidable.

- Guess the set of winning players $W \subseteq$ Agt;
- Check that the 1.5 -player game of Agt vs \varnothing is winning for the conjunction:

$$
\Gamma \wedge \bigwedge_{i \in W} \operatorname{AS}\left(\varphi_{i}\right) \wedge \bigwedge_{i \notin W} \mathrm{NZ}\left(\neg \varphi_{i}\right)
$$

- For all $C \subseteq \bar{W}$, check that C against \bar{C} is losing.

Contribution 3: Core

Theorem

For a pair (\mathscr{G}, Γ) where players' objectives are almost-sure reachability or almost-sure safety objectives, and property $\Gamma=\operatorname{AS}(\varphi)$ with φ of the form $\wedge_{i} \diamond R_{i}, \wedge_{i} \square R_{i}$, or $\Lambda_{i} \square \diamond R_{i}$, the problems of E -Core and A -Core are decidable.

- Guess the set of winning players $W \subseteq$ Agt;
- Check that the 1.5 -player game of Agt vs \varnothing is winning for the conjunction:

$$
\Gamma \wedge \bigwedge_{i \in W} \operatorname{AS}\left(\varphi_{i}\right) \wedge \bigwedge_{i \notin W} \mathrm{NZ}\left(\neg \varphi_{i}\right)
$$

- For all $C \subseteq \bar{W}$, check that C against \bar{C} is losing.

NB: "maximal" result since Büchi+coBüchi objectives make the problem undecidable [BBS07].

Summary and future work

- Rational Verification problem on infinite state still decidable;
- Qualitative Objectives for Stochastic Equilibria;
- vs The probabilistic setting is more computable than the ND one.
- Rational Verification problem on infinite state still decidable;
- Qualitative Objectives for Stochastic Equilibria;
- vs The probabilistic setting is more computable than the ND one.

Future work:

- Restrictions on the strategy classes (FM only?);
- Nash Equilibria;
- Partial observation (Signal Games).

Summary and future work

- Rational Verification problem on infinite state still decidable;
- Qualitative Objectives for Stochastic Equilibria;
- vs The probabilistic setting is more computable than the ND one.

Future work:

- Restrictions on the strategy classes (FM only?);
- Nash Equilibria;
- Partial observation (Signal Games).

Thank you for your attention

Bibliography

[AABN18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. A load-buffer semantics for total store ordering. Logical Methods in Computer Science, 14(1), 2018.
[BBS06] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. A note on the attractor-property of infinite-state markov chains. Inf. Process. Lett., 97(2):58-63, 2006.
[BBS07] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties. ACM Trans. Comput. Log., 9(1):5, 2007.
[dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. Theor. Comput. Sci., 386(3):188-217, 2007.
[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor. Comput. Sci., 256(1-2):63-92, 2001.
[May03] Richard Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci., 297(1-3):337-354, 2003.

Strategy Classes

A strategy for player i is:

$$
\sigma_{i}: S^{+} \rightarrow \operatorname{Dist}(\mathrm{Act})
$$

- Determistic: only one action with probability 1 ;

$$
\forall h \in S^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

Strategy Classes

A strategy for player i is:

$$
\sigma_{i}: S^{+} \rightarrow \operatorname{Dist}(\mathrm{Act})
$$

- Determistic: only one action with probability 1 ;

$$
\forall h \in S^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

- Positional: depends only on the current state;

$$
\forall h \in S^{*}, \forall s \in S^{+}, \sigma_{i}(h \cdot s)=\sigma_{i}(s)
$$

Strategy Classes

A strategy for player i is:

$$
\sigma_{i}: S^{+} \rightarrow \operatorname{Dist}(\mathrm{Act})
$$

- Determistic: only one action with probability 1 ;

$$
\forall h \in S^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

- Positional: depends only on the current state;

$$
\forall h \in S^{*}, \forall s \in S^{+}, \sigma_{i}(h \cdot s)=\sigma_{i}(s)
$$

Strategy Classes

A strategy for player i is:

$$
\sigma_{i}: S^{+} \rightarrow \operatorname{Dist}(\mathrm{Act})
$$

- Determistic: only one action with probability 1 ;

$$
\forall h \in S^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

- Positional: depends only on the current state;

$$
\forall h \in S^{*}, \forall s \in S^{+}, \sigma_{i}(h \cdot s)=\sigma_{i}(s)
$$

Can't we just play with DP strategies only?

Strategy Classes, Updated

A strategy for player i is: $\sigma_{i}:\left(L \cdot M^{*}\right)^{+} \rightarrow \operatorname{Dist}($ Act $)$

- Determistic: only one action with probability 1 ;

$$
\forall h \in\left(L \cdot M^{*}\right)^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

Strategy Classes, Updated

A strategy for player i is: $\sigma_{i}:\left(L \cdot M^{*}\right)^{+} \rightarrow \operatorname{Dist}(A c t)$

- Determistic: only one action with probability 1 ;

$$
\forall h \in\left(L \cdot M^{*}\right)^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

- Positional: depends only on the current state;

$$
\forall h \in\left(L \cdot M^{*}\right)^{*}, \forall s \in L \cdot M^{*}, \sigma_{i}(h \cdot s)=\sigma_{i}(s)
$$

Strategy Classes, Updated

A strategy for player i is: $\sigma_{i}:\left(L \cdot M^{*}\right)^{+} \rightarrow \operatorname{Dist}(A c t)$

- Determistic: only one action with probability 1;

$$
\forall h \in\left(L \cdot M^{*}\right)^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

- Positional: depends only on the current state;

$$
\forall h \in\left(L \cdot M^{*}\right)^{*}, \forall s \in L \cdot M^{*}, \sigma_{i}(h \cdot s)=\sigma_{i}(s)
$$

- Finite Memory: the distribution of actions can be computed by a finite automaton.

$$
\forall \delta \in \operatorname{Dist}(\text { Act }),\left\{h \in\left(L \cdot M^{*}\right)^{+} \mid \sigma_{i}(h)=\delta\right\} \text { is a regular set }
$$

and the set of possible distributions is finite.

Strategy Classes, Updated

A strategy for player i is: $\sigma_{i}:\left(L \cdot M^{*}\right)^{+} \rightarrow \operatorname{Dist}(A c t)$

- Determistic: only one action with probability 1 ;

$$
\forall h \in\left(L \cdot M^{*}\right)^{+}, \exists \alpha: \sigma_{i}(h)[\alpha]=1
$$

- Positional: depends only on the current state;

$$
\forall h \in\left(L \cdot M^{*}\right)^{*}, \forall s \in L \cdot M^{*}, \sigma_{i}(h \cdot s)=\sigma_{i}(s)
$$

- Finite Memory: the distribution of actions can be computed by a finite automaton.

$$
\forall \delta \in \operatorname{Dist}(\operatorname{Act}),\left\{h \in\left(L \cdot M^{*}\right)^{+} \mid \sigma_{i}(h)=\delta\right\} \text { is a regular set }
$$

and the set of possible distributions is finite.
P strategies may not be finitely represented. PFM are finitely represented, Counting too.

Strategy Classes, Updated, Counting

A strategy for player i is Counting: if there exist two PFM strategies σ^{u}, σ^{v} such that:

$$
\forall n \geq 1, \forall h \in S^{n}, \sigma(h)=p_{n} \cdot \sigma^{u}(h)+\left(1-p_{n}\right) \sigma^{v}(h)
$$

Where:

$$
p_{n}=2^{-1 /\left(2^{k}\right)}
$$

Counting strategies are sufficient for winning $\mathrm{NZ}(\square \cdots)$.

Skirmish Game [dAHK07]

Played:

Skirmish Game [dAHK07]

Played: hw

Skirmish Game [dAHK07]

Played: rs

Skirmish Game [dAHK07]

Played: rs

Skirmish Game [dAHK07]

Played: rs

Skirmish Game [dAHK07]

Played: rw

Skirmish Game [dAHK07]

Played: rw

Skirmish Game [dAHK07]

$$
A_{1}\left(s_{0}\right)=\{h, r\}
$$

$$
A_{2}\left(s_{0}\right)=\{s, w\}
$$

Played: rw

Skirmish Game [dAHK07]

Played: hs

Skirmish Game [dAHK07]

Played: hs

Skirmish Game [dAHK07]

Played: hs

