Concurrent Stochastic Lossy Channel Games

Daniel Stan

EPITA Research Labl, France

February 21, 2024
joint work with Muhammad Najib?,

2 %%% Anthony W. Lin34,
Parosh Abdulla®

UNIVERSITY

UPPSALA
UNIVERSITET

—
3 4 a MAX PLANCK INSTITUTE 5
=" FOR SOFTWARE SYSTEMS

Outline

O Lossy Channel Systems
O Finite Concurrent Games

Q Infinite Concurrent Games

2/ 19

Channel Systems

Channel Systems

3/ 19

Channel Systems

Channel Systems (FIFO): Motivations

Modelisation and verification of systems with:
o Network transmissions;
o Transactional operations;
o TSO semantics [AABN18]

Channel Systems

Channel Systems (FIFO): Motivations

4/19

Channel Systems

Channel Systems (FIFO): Motivations

071 0 c?1 e 010
c
D?l c?1 c?0
070 e ¢?0 e oll
0
Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

| |

071 0 cl0 0, «¢?1 e 010
¢

071 070 c?1 c?0

070 o cll

Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

071 0 0 c?1 e 010
c
D?l c?1 c?0
070 e ¢?0 e oll
0
Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

| |

071 e cl0 0,00 ¢?1 e 010
c

071 070 c?1 c?0

070 o cll

Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

|
071 ‘E') c!0 0
¢

071 070

070 ('H') cll

Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

|
071 ‘E’ c!0 0
¢

071 070

070 ('H') cll 1

Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

071 0 cl0 0, «¢?1 e 010
¢

071 070 c?1 c?0

070 e cll 1

Py P>

4/19

Channel Systems

Channel Systems (FIFO): Motivations

Communication:
o Send a message mon ¢: ¢!m
o Receive a message ¢?m, only if m was at the end of the queue.

4/19

Channel Systems

Channel Systems (FIFO): Motivations

Communication:
o Send a message mon ¢: ¢!m
o Receive a message ¢?m, only if m was at the end of the queue.

For this talk: only one channel, and one component.
4/19

Channel Systems

Lossiness assumption

Assumption: at every round, every message may disappear.

c
_

abc,

Channel Systems

Lossiness assumption

Assumption: at every round, every message may disappear.

c
_

abc,
_—
a c
s

5/ 19

Channel Systems

Lossiness assumption

Assumption: at every round, every message may disappear.

c
_

abc,

5/ 19

Channel Systems

Lossiness assumption

Assumption: at every round, every message may disappear.

c
5
abc

5/ 19

Channel Systems

Lossiness assumption

Assumption: at every round, every message may disappear.

c
S SN
abc

Effect of a transition '/ £ I" onstates= [-w:

O Change location to /" ;
O Apply the channel operation f on w to get w';

O Drop from w' to w” <w’: subword ordering.

Result: s"'= 1 -w'":

5/ 19

Channel Systems

Subword-ordering < is a well-quasi order [FSO1]

Definition ([FSO01])
(S,=) is a well-quasi-order (WQO) if: Y(s;)ien€ SN, i< j:si<5;

6/ 19

Channel Systems

Subword-ordering < is a well-quasi order [FSO1]

Definition ([FSO01])

(S,<) is a well-quasi-order (WQO) if: V(s;)ien € SN,3i<j:s; < sj
(S,—,=) is a well-structured transition system:

t
Vs,s',t, VI

S—>5’

6/ 19

Channel Systems

Subword-ordering < is a well-quasi order [FSO1]

Definition ([FSO01])

(S,<) is a well-quasi-order (WQO) if: V(s;)ien € SN,3i<j:s; < sj
(S,—,=) is a well-structured transition system:

3
t— ¢t/ a.k.a. Pre(s) ={t | s — t} preserves <-closed sets
Vs, s’ t, Y Yl

S—>5’

6/ 19

Channel Systems

Subword-ordering < is a well-quasi order [FS01]

Definition ([FSO01])

S,=) is a well-quasi-order (WQO) if: V(s;)ien€ SV, 3i<j s <s;
Well-quasi-oraer j
(S,—,=) is a well-structured transition system:

3
t— ¢t/ a.k.a. Pre(s) ={t | s — t} preserves <-closed sets
Vs, s’ t, Y Yl

S—>5’

Q backward reachability scheme [FS01] for non-deterministic schedulers:
JPre"(R)={s | I(sn):s=50— 51 —...5k € R} = [E(OR)]

n=0

6/ 19

Channel Systems

Lossiness in the probabilistic case

Local lossiness assumption: at every step, there is a positive probability 1€(0,1),
that a letter in the channel is dropped. Every message drop event is independent from

the others.

C
_—

abc,

Channel Systems

Lossiness in the probabilistic case

Local lossiness assumption: at every step, there is a positive probability 1€(0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

7/ 19

Channel Systems

Lossiness in the probabilistic case

Local lossiness assumption: at every step, there is a positive probability 1€(0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

Qualitative setting:
INZ(OR)I={s | Pr(s—=*s'"e R)>0} [AS(OR)I={s| Pr(s—*s'eR)=1}

7/ 19

Concurrent Finite Games

Stochastic Concurrent Finite Games

8/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

-a
S1 S
a_
[
[o
aa,bb
(hr—
o aa,bb o
o o
o o
Y] Y]

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently

o @@ Also: stochastic transitions (players and
environment)

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently

o @@ Also: stochastic transitions (players and
environment)

o Simple Objectives:
Reachability, Safety, Biichi, CoBiichi:

Ex: 0 wa ,00{ w2 1,000 st ,00{ &1 , B2 }

9/ 19

Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently
o @i Also: stochastic transitions (players and
environment)
o Simple Objectives:
Reachability, Safety, Biichi, CoBiichi:
Ex: 0 wi O w2 },OO &1 , 0L &1, t2 }
o Evaluated Qualitatively:
almost surely, Pr(...)=1 (AS)
or with positive probability Pr(...) >0 (NZ).

9/ 19

Concurrent Finite Games

Different Ways of Winning

Players play strategies:

VieAgt oj: S0 S ... Sn —6eDist(Actj(Sn))

[

"
history €S+ allowed actions in last state

10 / 19

Concurrent Finite Games

Different Ways of Winning

Players play strategies:

VieAgt oj: S0 S ... Sn —6eDist(Actj(Sn))

[

"
history €S+ allowed actions in last state

o Zero-sum case for two players, we compute the winning regions:
INZ(p1)l1={s | o1 : Vo2, Priv?2(¢1) > 0}
[AS(p1)l1 ={s | Jo1: Vo2, Priv?2(¢;) =1}

10 / 19

Concurrent Finite Games

Different Ways of Winning

Players play strategies:

VieAgt oj: S0 S ... Sn —6eDist(Actj(Sn))

[

"
history €S+ allowed actions in last state

o Zero-sum case for two players, we compute the winning regions:
INZ(p1)l1={s | o1 : Vo2, Priv?2(¢1) > 0}
[IAS((pl)]]l ={s | 301 . VO’2, Pral’az((pl) = 1}
o For n players with objectives (®;);cag and a specification T', we consider the
Rational Verification problem:
Does there exists & in the core satisfying I'?

10 / 19

Concurrent Finite Games

Different Ways of Winning

Players play strategies:

VieAgt oj: S0 S ... Sn —6eDist(Actj(Sn))

[

"
history €S+ allowed actions in last state

o Zero-sum case for two players, we compute the winning regions:
INZ(p1)l1={s | o1 : Vo2, Priv?2(¢1) > 0}
[IAS((pl)]]l ={s | 301 . VO’2, Pral’az((pl) = 1}
o For n players with objectives (®;);cag and a specification T', we consider the
Rational Verification problem:
Does there exists & in the core satisfying I'?
Do all G in the core satisfy I'?

10 / 19

Concurrent Finite Games

Different Ways of Winning

Players play strategies:

VieAgt oj: S0 S ... Sn —6eDist(Actj(Sn))

[

"
history €S+ allowed actions in last state

o Zero-sum case for two players, we compute the winning regions:
INZ(p1)l1={s | o1 : Vo2, Priv?2(¢1) > 0}
[IAS((pl)]]l ={s | 301 . VO’2, Pral’az((pl) = 1}

o For n players with objectives (®;);cag and a specification T', we consider the
Rational Verification problem:
E-CORE: Does there exists in the core satisfying I'?
A-CORE: Do all ¢ in the core satisfy I'?

10 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [INZ(OR)]1
Take X:=R

11 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [INZ(OR)]1
Take X:=R

// Add to X any state that 1 can enforce
// reaching with positive probability
X :=XuPre1(X)

p>0

11 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [INZ(OR)]1
Take X:=R

// Add to X any state that 1 can enforce
// reaching with positive probability
X :=XuPre1(X)

11 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [INZ(OR)]1
Take X:=R

Repeat until convergence:
// Add to X any state that 1 can enforce

// reaching with positive probability
X :=XuPre1(X)

p>0 P>0 p>0

11 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [NZ(OR)I1

Take X:=R

Repeat until convergence:
// Add to X any state that 1 can enforce
// reaching with positive probability
X :=XuPre1(X)

p>0 P>0 p>0
~> By determinacy, we can compute [AS(CIR)I>.

11 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKO7] (bis)

How about Almost-Sure Reachability?

Recipe for [AS(OR)Iy

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKO7] (bis)

How about Almost-Sure Reachability?

Recipe for [AS(OR)I1
// Where can we force positive probability?
Y:= [[NZ((}R)]];L

>0

12 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKO7] (bis)

How about Almost-Sure Reachability?

> Recipe for [AS(OR)I:

// Where can we force positive probability?
Y := [NZ(OR)l1

<

>0

12 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKO7] (bis)

How about Almost-Sure Reachability?

Recipe for [AS(OR)I1

// Where can we force positive probability?
Y := [NZ(OR)l1

// Now, stay safe in this set

X = [AS(OY)

12 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKO7] (bis)

How about Almost-Sure Reachability?

Recipe for [AS(OR)I1

// Where can we force positive probability?

Y := [NZ(OR)l1

// Now, stay safe in this set

X = [AS(OY)

// ARemove actions losing for AS(C0Y) A

Vs Acti(s):={aeActi(s) | 3: p(s,(a,B), Y) <1}
Repeat until convergence

12 / 19

Concurrent Finite Games

Fixed Point Algorithms for Concurrent Games [dAHKO7] (bis)

How about Almost-Sure Reachability?

Recipe for [AS(OR)I1

// Where can we force positive probability?

Y := [NZ(OR)l1

// Now, stay safe in this set

X = [AS(OY)

// ARemove actions losing for AS(C0Y) A

Vs Acti(s):={aeActi(s) | 3: p(s,(a,B), Y) <1}
Repeat until convergence

~» By determinacy, we can compute [NZ(OR)]>.

12 / 19

Concurrent Finite Games
Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.

P1: AS(<>{ Sw })

P2: NZ(D{ Sw }).

13 / 19

Concurrent Finite Games
Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.
But action r is losing. A\

13 / 19

Concurrent Finite Games
Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.
But action r is losing. A\

O Step2: Y=X={ Sw }=|IAS(<> Sw)]]1

13 / 19

Concurrent Finite Games

Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.
But action r is losing. A\

O Step2: Y=X={ Sw }= HAS(O Sw)]]1
Some remarks:
o Ve>0; Player 1 can "“win" with probability 1—¢,

o For any finite memory strategy oo, player 1 can
goto Sw almost-surely.

o Still, Player 2 wins this game but with an infinite
memory strategy.

13 / 19

Concurrent Finite Games

Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.
But action r is losing. A\

O Step2: Y=X={ Sw }= HAS(O Sw)]]1
Some remarks:
o Ve>0; Player 1 can "“win" with probability 1—¢,

o For any finite memory strategy oo, player 1 can
goto Sw almost-surely.

o Still, Player 2 wins this game but with an infinite
memory strategy.

1\
vn,oa((50 ... (50)[s]:(—)
n times

13 / 19

CSLCG

Concurrent Games + Lossy Channel Systems

CSLCG

Concurrent Games + Lossy Channel Systems

Infinite State Games

CSLCG: Def by Example

>>> awlal, bwb!
balb!, ab|a! blc?
f al abla /D* lc h
bb|c!, aalc! \J/
Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

>>> awlal, bwb!
bal|b!, | abla! blc?
lo | | /D *b b
bblc!, aalc!
Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

)>> — 5] awlalbwlb!

bal|b!, | abla! blc?
lo | | /D *ble b
bblc!, aalc!
Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

)>> — 3] awlalbwib!

balb!, abla! blc?
o | 2)R,
bb|c!, aalc! H/

Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

>>> ‘ b|a‘ aw|a!, bw|b!

ba|b!, ab|a! blc?
e Gyenet g
bb|c!, aalc! \j/

Sender Attacker bw|b!, law|a! * %

15 / 19

CSLCG: Def by Example

>>> o Bla] awlahbwlb
balb!, abla! blc?
A a| abla //_1* |c h
bblc!, | aalc! \J/
Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

>>> \c\b|a\ awl|al, bw|b!
ba|b!, ab|a! blc?
f al abla //1* lc h
bblc!, aalc! H/
Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

>>> awl|al, bw|b!
balb!, ab|a! blc?
I | | /II* lc b
bb|c!, aalc! H/

Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

>>> o awl|al, bw|b!
. balb!, ablal . xb|c? .
0 bblc!, aalc! Hl/ 2
Sender Attacker bw|b!, aw|al o

15 / 19

CSLCG: Def by Example

>>> awl|al, bw|b!
balb!, abla! blc?
f a| abla /D* lc h
bb|c!, aalc! \J/
Sender Attacker bw|b!, aw|al o

From s= [-w:
O Pick an action for every player, then take the corresponding [LR

O Change location to /" ;
O Apply the channel operation f on w to get w/;
O Drop from w' to w” <w’: subword ordering.

Result: s'= 1 -w":

15 / 19

CSLCG
Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHKO07]) still apply!

16 / 19

CSLCG
Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHKO07]) still apply!
o Pre;(X)={s | i can enforce reaching X in one step with pp.}.
o Pre; is computable for regular sets.
o Termination: Thanks to WQO's property [FSO01].
o Correctness: Finite Attractor property [BBS06].

16 / 19

CSLCG
Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHKO07]) still apply!
o Pre;(X)={s | i can enforce reaching X in one step with pp.}.
o Pre; is computable for regular sets.
o Termination: Thanks to WQO's property [FSO01].
o Correctness: Finite Attractor property [BBS06].

Let Rc L-M* a regular set of configurations. One can compute the set of winning

configurations:
o Positive P. Reachability: INZ(OR)I1;

o Almost Sure Reachability: [AS(OR)11;

16 / 19

CSLCG
Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHKO07]) still apply!
o Pre;(X)={s | i can enforce reaching X in one step with pp.}.
o Pre; is computable for regular sets.
o Termination: Thanks to WQO's property [FSO01].
o Correctness: Finite Attractor property [BBS06].

Let Rc L-M* a regular set of configurations. One can compute the set of winning
configurations:
o Positive P. Reachability: [INZ(OR)l1; o Almost sure Safety: [AS(OR)I1;

o Almost Sure Reachability: [AS(OR)]1,; o Positive P. Safety: [INZ(CR)l1,

16 / 19

Contribution 2: Conjunction of Objectives

Theorem

Let ® be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region [®]; is computable.

~» More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(OI...)) with infinite state space.

Contribution 2: Conjunction of Objectives

Theorem

Let ® be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region [®]; is computable.

~» More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(OI...)) with infinite state space.

NB: It is the “maximal” possible result:

Se
’00-

" Bertrand and al [BBS07] proves that NZ(CJOR) (Biichi) and
AS(D(}Rl A QORy) cases are undecidable.

o g [May03] proved that [E(CJR)]1 cannot be computed.

17 / 19

Contribution 3: Core

Theorem

For a pair (4,T) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property T = AS(¢) with ¢ of the form \;OR;, A\;OR;, or
N;OOR;, the problems of E-Core and A-Core are decidable.

18 / 19

Contribution 3: Core

Theorem

For a pair (4,T) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property T = AS(¢) with ¢ of the form \;OR;, A\;OR;, or
N;OOR;, the problems of E-Core and A-Core are decidable.

o Guess the set of winning players W < Agt;
o Check that the 1.5-player game of Agt vs @ is winning for the conjunction:

A A AS(pi)n)\ NZ(—g))
eWw ieW

o For all C =W, check that C against C is losing.

18 / 19

CSLCG
Contribution 3: Core

Theorem

For a pair (4,T) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property T = AS(¢) with ¢ of the form \;OR;, A\;OR;, or
N;OOR;, the problems of E-Core and A-Core are decidable.

o Guess the set of winning players W < Agt;
o Check that the 1.5-player game of Agt vs @ is winning for the conjunction:
Ta N\ AS(gi) A N\ NZ(=gi)
iew W
o For all C =W, check that C against C is losing.

NB: “maximal” result since Biichi+-coBiichi objectives make the problem undecidable
[BBSO07].

18 / 19

Conclusions

Summary and future work

o Rational Verification problem on infinite state still decidable;
o Qualitative Objectives for Stochastic Equilibria;
o R vs #i#: The probabilistic setting is more computable than the ND one.

19 / 19

Conclusions

Summary and future work

o Rational Verification problem on infinite state still decidable;

o Qualitative Objectives for Stochastic Equilibria;

o R vs #i#: The probabilistic setting is more computable than the ND one.
Future work:

o Restrictions on the strategy classes (FM only?);

o Nash Equilibria;

o Partial observation (Signal Games).

19 / 19

Conclusions

Summary and future work

o Rational Verification problem on infinite state still decidable;

o Qualitative Objectives for Stochastic Equilibria;

o R vs #i#: The probabilistic setting is more computable than the ND one.
Future work:

o Restrictions on the strategy classes (FM only?);

o Nash Equilibria;

o Partial observation (Signal Games).

Thank you for your attention

19 / 19

Bibliography |

[AABN18]
[BBS06]
[BBS07]

[dAHKO7]

[FSo1]

[May03]

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. A load-buffer
semantics for total store ordering. Logical Methods in Computer Science, 14(1), 2018.

Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. A note on the attractor-property of
infinite-state markov chains. Inf. Process. Lett., 97(2):58-63, 2006.

Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Verifying nondeterministic probabilistic
channel systems against w-regular linear-time properties. ACM Trans. Comput. Log., 9(1):5, 2007.

Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. Theor.

Comput. Sci., 386(3):188-217, 2007.

Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63-92, 2001.

Richard Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci.,
297(1-3):337-354, 2003.

Strategy Classes

A strategy for player i is:
o;:S* — Dist(Act)

o Determistic: only one action with probability 1;

VheS*,3a:0i(h)[a] =1

Strategy Classes

A strategy for player i is:
o;:S* — Dist(Act)

o Determistic: only one action with probability 1;

VheS*,3a:0i(h)[a] =1

o Positional: depends only on the current state;

Vhe S*,Vse St ai(h-s)=0/(s)

Strategy Classes

A strategy for player i is:
o;:S* — Dist(Act)

o Determistic: only one action with probability 1;

VheS*,3a:0i(h)[a] =1

o Positional: depends only on the current state;

Vhe S*,Vse St ai(h-s)=0/(s)

Strategy Classes

A strategy for player i is:
o;:S* — Dist(Act)

o Determistic: only one action with probability 1;

VheS*,3a:0i(h)[a] =1

o Positional: depends only on the current state;

Vhe S*,Vse St ai(h-s)=0/(s)

Can’t we just play with DP strategies only?

Strategy Classes, Updated

A strategy for player i is: g;:(L-M*)* — Dist(Act)
o Determistic: only one action with probability 1;

VYhe(L-M*)",3a:0;(h)[a] =1

Strategy Classes, Updated

A strategy for player i is: g;:(L-M*)* — Dist(Act)
o Determistic: only one action with probability 1;

VYhe(L-M*)",3a:0;(h)[a] =1

o Positional: depends only on the current state;

Vhe (L-M*)*,¥seL-M*,ai(h-s)=o;i(s)

Strategy Classes, Updated

A strategy for player i is: g;:(L-M*)* — Dist(Act)
o Determistic: only one action with probability 1;

VYhe(L-M*)",3a:0;(h)[a] =1

o Positional: depends only on the current state;

Vhe (L-M*)*,¥seL-M*,ai(h-s)=o;i(s)

o Finite Memory: the distribution of actions can be computed by a finite automaton.
V6 € Dist(Act),{he (L-M*)" | a;(h) =6} is a regular set

and the set of possible distributions is finite.

Strategy Classes, Updated

A strategy for player i is: g;:(L-M*)* — Dist(Act)
o Determistic: only one action with probability 1;

VYhe(L-M*)",3a:0;(h)[a] =1

o Positional: depends only on the current state;

Vhe (L-M*)*,¥seL-M*,ai(h-s)=o;i(s)

o Finite Memory: the distribution of actions can be computed by a finite automaton.
V6 € Dist(Act),{he (L-M*)" | a;(h) =6} is a regular set
and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.

Strategy Classes, Updated, Counting

A strategy for player i is Counting: if there exist two PFM strategies 0“,0" such that:
Vnz=1,Yhe S",a(h)=py-c"(h)+(1-pn)o’(h)

Where:
pn= 0=1/(2%)

Counting strategies are sufficient for winning NZ(O--).

Skirmish Game [dAHKO7]

3
o<

X
I
Ai1(so) = th, r} Ax(s0) = {s, w}

Played:

Skirmish Game [dAHKO7]

3
o<

. X

Ai1(so) = th, r} Ax(s0) = {s, w}

Played: hw

Skirmish Game [dAHKO7]

3
o<

. X

Ai1(so) = th, r} Ax(s0) = {s, w}

Played: rs

Skirmish Game [dAHKO7]

ol
o
-V
- AN
A1(so) ={h,r} Aax(s0) = {s, w}
Played: rs

Skirmish Game [dAHKO7]

3
o<

. X

Ai1(so) = th, r} Ax(s0) = {s, w}

Played: rs

Skirmish Game [dAHKO7]

3
o<

. X

Ai1(so) = th, r} Ax(s0) = {s, w}

Played: rw

Skirmish Game [dAHKO7]

o
uz—
o)
L X
Ai1(so) = th, r} Ax(s0) = {s, w}

Played: rw

Skirmish Game [dAHKO7]

L
o
o o
/" /Y‘
(<. \
Ai1(so) = th, r} Ax(s0) = {s, w}

Played: rw

Skirmish Game [dAHKO7]

3
o<

X
I
Ai1(so) = th, r} Ax(s0) = {s, w}

Played: hs

Skirmish Game [dAHKO7]

%
(N
o
o
-V
- \
Ai1(so) = th, r} Ax(s0) = {s, w}
Played: hs

Skirmish Game [dAHKO7]

L
o
0 o
/" /Y‘
O X
Ai1(so) = th, r} Ax(s0) = {s, w}
Played: hs

	Channel Systems
	Concurrent Finite Games
	CSLCG
	Conclusions
	Appendix

