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Channel Systems

Channel Systems (FIFO): Motivations

Modelisation and verification of systems with:
o Network transmissions;
o Transactional operations;
o TSO semantics [AABN18]
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Channel Systems (FIFO): Motivations

Communication:
o Send a message mon ¢: ¢!m
o Receive a message ¢?m, only if m was at the end of the queue.

For this talk: only one channel, and one component.
4/19
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Channel Systems

Lossiness assumption

Assumption: at every round, every message may disappear.

c
S SN
abc

Effect of a transition '/ £ I" onstates= [ -w:

O Change location to /" ;
O Apply the channel operation f on w to get w';

O Drop from w' to w” <w’: subword ordering.

Result: s"'= 1 -w'":
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Subword-ordering < is a well-quasi order [FSO1]

Definition ([FSO01])
(S,=) is a well-quasi-order (WQO) if: Y(s;)ien€ SN, i< j:si<5;
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Channel Systems

Subword-ordering < is a well-quasi order [FS01]

Definition ([FSO01])

S,=) is a well-quasi-order (WQO) if: V(s;)ien€ SV, 3i<j s <s;
Well-quasi-oraer j
(S,—,=) is a well-structured transition system:

3
t— ¢t/ a.k.a. Pre(s) ={t | s — t} preserves <-closed sets
Vs, s’ t, Y Yl

S—>5’

Q backward reachability scheme [FS01] for non-deterministic schedulers:
JPre"(R)={s | I(sn):s=50— 51 —...5k € R} = [E(OR)]

n=0
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Channel Systems

Lossiness in the probabilistic case

Local lossiness assumption: at every step, there is a positive probability 1€(0,1),
that a letter in the channel is dropped. Every message drop event is independent from

the others.
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Channel Systems

Lossiness in the probabilistic case

Local lossiness assumption: at every step, there is a positive probability 1€(0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

Qualitative setting:
INZ(OR)I={s | Pr(s—=*s'"e R)>0} [AS(OR)I={s| Pr(s—*s'eR)=1}
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Concurrent Finite Games

Stochastic Concurrent Finite Games
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Concurrent Game on a Finite graph

-a
S1 S
a_
[
[ o
aa,bb
(hr—
o aa,bb o
o o
o o
Y] Y]

9/ 19



Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently

9/ 19



Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently

o @@ Also: stochastic transitions (players and
environment)

9/ 19



Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently

o @@ Also: stochastic transitions (players and
environment)

o Simple Objectives:
Reachability, Safety, Biichi, CoBiichi:

Ex: 0 wa ,00{ w2 1,000 st ,00{ &1 , B2 }

9/ 19



Concurrent Finite Games

Concurrent Game on a Finite graph

o Finite Game Graph Played by multiple agents
o Actions are played concurrently
o @i Also: stochastic transitions (players and
environment)
o Simple Objectives:
Reachability, Safety, Biichi, CoBiichi:
Ex: 0 wi O w2 },OO &1 , 0L &1, t2 }
o Evaluated Qualitatively:
almost surely, Pr(...)=1 (AS)
or with positive probability Pr(...) >0 (NZ).
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Different Ways of Winning
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VieAgt oj: S0 S ... Sn —6eDist(Actj( Sn ))

[

"
history €S+ allowed actions in last state
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INZ(p1)l1={s | o1 : Vo2, Priv?2(¢1) > 0}
[IAS((pl)]]l ={s | 301 . VO’2, Pral’az((pl) = 1}

o For n players with objectives (®;);cag and a specification T', we consider the
Rational Verification problem:
E-CORE: Does there exists  in the core satisfying I'?
A-CORE: Do all ¢ in the core satisfy I'?
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Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [INZ(OR)]1
Take X:=R
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Fixed Point Algorithms for Concurrent Games [dAHKQ7]

Assume: Two players, Zero-sum, Reachability Objective for a given set R< S of states.
How to compute the winning set for player 17

Recipe for [NZ(OR)I1

Take X:=R

Repeat until convergence:
// Add to X any state that 1 can enforce
// reaching with positive probability
X :=XuPre1(X)

p>0 P>0 p>0
~> By determinacy, we can compute [AS(CIR)I>.
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Recipe for [AS(OR)I1

// Where can we force positive probability?

Y := [NZ(OR)l1

// Now, stay safe in this set

X = [AS(OY)

// ARemove actions losing for AS(C0Y) A

Vs Acti(s):={aeActi(s) | 3: p(s,(a,B), Y) <1}
Repeat until convergence

~» By determinacy, we can compute [NZ(OR)]>.
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Concurrent Finite Games
Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.

P1: AS(<>{ Sw })

P2: NZ(D{ Sw }).
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Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.
But action r is losing. A\

O Step2: Y=X={ Sw }= HAS(O Sw )]]1
Some remarks:
o Ve>0; Player 1 can "“win" with probability 1—¢,

o For any finite memory strategy oo, player 1 can
goto Sw almost-surely.

o Still, Player 2 wins this game but with an infinite
memory strategy.
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Example: Skirmish Game Analysis

o Stepl: Y=X={ S , Sw }.
But action r is losing. A\

O Step2: Y=X={ Sw }= HAS(O Sw )]]1
Some remarks:
o Ve>0; Player 1 can "“win" with probability 1—¢,

o For any finite memory strategy oo, player 1 can
goto Sw almost-surely.

o Still, Player 2 wins this game but with an infinite
memory strategy.

1\
vn,oa( (50 ... (50 )[s]:(—)
n times
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Infinite State Games
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CSLCG: Def by Example

>>> awl|al, bw|b!
balb!, abla! blc?
f a| abla /D* lc h
bb|c!, aalc! \J/
Sender  Attacker bw|b!, aw|al o

From s= [ -w:
O Pick an action for every player, then take the corresponding [ LR

O Change location to /" ;
O Apply the channel operation f on w to get w/;
O Drop from w' to w” <w’: subword ordering.

Result: s'= 1 -w":
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o Pre;(X)={s | i can enforce reaching X in one step with pp.}.
o Pre; is computable for regular sets.
o Termination: Thanks to WQO's property [FSO01].
o Correctness: Finite Attractor property [BBS06].

Let Rc L-M* a regular set of configurations. One can compute the set of winning
configurations:
o Positive P. Reachability: [INZ(OR)l1; o Almost sure Safety: [AS(OR)I1;

o Almost Sure Reachability: [AS(OR)]1,; o Positive P. Safety: [INZ(CR)l1,
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Contribution 2: Conjunction of Objectives

Theorem

Let ® be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region [®]; is computable.

~» More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(OI...)) with infinite state space.



Contribution 2: Conjunction of Objectives

Theorem

Let ® be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region [®]; is computable.

~» More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(OI...)) with infinite state space.

NB: It is the “maximal” possible result:

Se
’00-

" Bertrand and al [BBS07] proves that NZ(CJOR) (Biichi) and
AS(D(}Rl A QORy) cases are undecidable.

o g [May03] proved that [E(CJR)]1 cannot be computed.
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Contribution 3: Core

Theorem

For a pair (4,T) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property T = AS(¢) with ¢ of the form \;OR;, A\;OR;, or
N;OOR;, the problems of E-Core and A-Core are decidable.
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For a pair (4,T) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property T = AS(¢) with ¢ of the form \;OR;, A\;OR;, or
N;OOR;, the problems of E-Core and A-Core are decidable.

o Guess the set of winning players W < Agt;
o Check that the 1.5-player game of Agt vs @ is winning for the conjunction:
Ta N\ AS(gi) A N\ NZ(=gi)
iew W
o For all C =W, check that C against C is losing.

NB: “maximal” result since Biichi+-coBiichi objectives make the problem undecidable
[BBSO07].
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Conclusions

Summary and future work

o Rational Verification problem on infinite state still decidable;
o Qualitative Objectives for Stochastic Equilibria;
o R vs #i#: The probabilistic setting is more computable than the ND one.
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o Qualitative Objectives for Stochastic Equilibria;

o R vs #i#: The probabilistic setting is more computable than the ND one.
Future work:

o Restrictions on the strategy classes (FM only?);

o Nash Equilibria;

o Partial observation (Signal Games).

Thank you for your attention
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A strategy for player i is:
o;:S* — Dist(Act)

o Determistic: only one action with probability 1;

VheS*,3a:0i(h)[a] =1

o Positional: depends only on the current state;

Vhe S*,Vse St ai(h-s)=0/(s)

Can’t we just play with DP strategies only?
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A strategy for player i is: g;:(L-M*)* — Dist(Act)
o Determistic: only one action with probability 1;

VYhe(L-M*)",3a:0;(h)[a] =1

o Positional: depends only on the current state;

Vhe (L-M*)*,¥seL-M*,ai(h-s)=o;i(s)
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o Positional: depends only on the current state;
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o Finite Memory: the distribution of actions can be computed by a finite automaton.
V6 € Dist(Act),{he (L-M*)" | a;(h) =6} is a regular set
and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.



Strategy Classes, Updated, Counting

A strategy for player i is Counting: if there exist two PFM strategies 0“,0" such that:
Vnz=1,Yhe S",a(h)=py-c"(h)+(1-pn)o’(h)

Where:
pn= 0=1/(2%)

Counting strategies are sufficient for winning NZ(O-- ).
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