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Channel Systems (FIFO): Motivations

Modelisation and verification of systems with:
Network transmissions;
Transactional operations;
TSO semantics [AABN18]

For this talk: only one channel, and one component.
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Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
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a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy



Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy



Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c

c
a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy



Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

5 / 19 lossy



Channel Systems Concurrent Finite Games CSLCG Conclusions

Lossiness assumption

Assumption: at every round, every message may disappear.
c
a b c

c
a c

c
b c c

a . . .

Effect of a transition l
f−→ l ′ on state s = l ·w :

1 Change location to l ′ ;
2 Apply the channel operation f on w to get w ′;
3 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:
5 / 19 lossy



Channel Systems Concurrent Finite Games CSLCG Conclusions

Subword-ordering ⪯ is a well-quasi order [FS01]

Definition ([FS01])

(S ,⪯) is a well-quasi-order (WQO) if: ∀(si )i∈N ∈ SN,∃i < j : si ⪯ sj

(S ,→,⪯) is a well-structured transition system:

s s ′

t

∀s,s ′,t, ⪯

t ′
∃∃∃

⪯⪯ ⪯

a.k.a. Pre(s)= {t | s → t} preserves ⪯-closed sets

backward reachability scheme [FS01] for non-deterministic schedulers:⋃
n≥0

Pren(R)= {s | ∃(sn) : s = s0 → s1 → . . .sk ∈R} = �E(♢R)�
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Lossiness in the probabilistic case

Stochastic case: the semantics is a Markov chain (S ,Pr).
Local lossiness assumption: at every step, there is a positive probability λ ∈ (0,1),
that a letter in the channel is dropped. Every message drop event is independent from
the others.

c
a b c

c
a c

c
b c c

a . . .

λ(1−λ)2
λ(1−λ)2

λ2(1−λ)

Qualitative setting:
�NZ(♢R)� = {s | Pr(s →∗ s ′ ∈R)> 0} �AS(♢R)� = {s | Pr(s →∗ s ′ ∈R)= 1}
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Stochastic Concurrent Finite Games
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Concurrent Game on a Finite graph
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Finite Game Graph Played by multiple agents
Actions are played concurrently

Also: stochastic transitions (players and
environment)
Simple Objectives:
Reachability, Safety, Büchi, CoBüchi:
Ex: ♢ w1 ,□{ w2 },□♢ s1 ,♢□{ t1 , t2 }

Evaluated Qualitatively:
almost surely, Pr(. . .)= 1 (AS)
or with positive probability Pr(. . .)> 0 (NZ).
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Different Ways of Winning

Players play strategies:

∀i ∈ Agt, σi : s0 s1 . . . sn︸ ︷︷ ︸
history ∈S+

7→ δ ∈ Dist(Acti ( sn )︸ ︷︷ ︸
allowed actions in last state

)

Zero-sum case for two players, we compute the winning regions:
�NZ(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)> 0}
�AS(ϕ1)�1 = {s | ∃σ1 :∀σ2,Prσ1,σ2(ϕ1)= 1}

For n players with objectives (Φi )i∈Agt and a specification Γ, we consider the
Rational Verification problem:

E-CORE:

Does there exists σ⃗ in the core satisfying Γ?

A-CORE:

Do all σ⃗ in the core satisfy Γ?

10 / 19 gameanalysis
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Fixed Point Algorithms for Concurrent Games [dAHK07]

Assume: Two players, Zero-sum, Reachability Objective for a given set R ⊆ S of states.
How to compute the winning set for player 1?

R X1
X2

X3

p > 0 p > 0 p > 0

Recipe for �NZ(♢R)�1
Take X :=R

Repeat until convergence:
// Add to X any state that 1 can enforce
// reaching with positive probability
X :=X ∪Pre1(X )

⇝ By determinacy, we can compute �AS(□R)�2.

11 / 19 zsfixpoint
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Fixed Point Algorithms for Concurrent Games [dAHK07] (bis)

How about Almost-Sure Reachability?

R

X
Y Y

> 0

> 0

= 1

Recipe for �AS(♢R)�1

// Where can we force positive probability?
Y := �NZ(♢R)�1
// Now, stay safe in this set
X := �AS(□Y )�1
// "Remove actions losing for AS(□Y ) "
∀s Act1(s) := {α ∈ Act1(s) | ∃β : p(s ,(α,β),Y )< 1}
Repeat until convergence
⇝ By determinacy, we can compute �NZ(□R)�2.
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Example: Skirmish Game Analysis

s0

sw sl

hw

rs
rs//

rw
,h
s

rw//
/ ,
hs

P1: AS(♢{ sw })

P2: NZ
(
□{ sw }

)
.

Step 1: Y =X = { s0 , sw }.

But action r is losing."

Step 2: Y =X = { sw } = �AS(♢ sw )�1.
Some remarks:

∀ϵ> 0; Player 1 can “win” with probability 1−ϵ,
For any finite memory strategy σ2, player 1 can
go to sw almost-surely.

Still, Player 2 wins this game but with an infinite
memory strategy.

∀n,σ2( s0 . . . s0︸ ︷︷ ︸
n times

)[s]=
(
1
2

)2−n

13 / 19 skirmishanalysis
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Concurrent Games + Lossy Channel Systems

=
Infinite State Games
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CSLCG: Def by Example

Sender

aab abc c

ReceiverAttacker

l0 l1 l2

aw |a!,bw |b!

ab|a!ba|b!,
aa|c!bb|c!,

∗b|c?

∗∗aw |a!bw |b!,

From s = l ·w :
1 Pick an action for every player, then take the corresponding l

f−→ l ′

2 Change location to l ′ ;
3 Apply the channel operation f on w to get w ′;
4 Drop from w ′ to w ′′ ⪯w ′: subword ordering.

Result: s ′ = l ′ ·w ′′:

15 / 19 clcgex
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Contribution 1: Zero-sum case

The fixed point algorithms ([FS01, dAHK07]) still apply!

Prei (X )= {s | i can enforce reaching X in one step with pp.}.
Prei is computable for regular sets.
Termination: Thanks to WQO’s property [FS01].
Correctness: Finite Attractor property [BBS06].

Theorem
Let R ⊆ L ·M∗ a regular set of configurations. One can compute the set of winning
configurations:

Positive P. Reachability: �NZ(♢R)�1;
Almost Sure Reachability: �AS(♢R)�1;

Almost sure Safety: �AS(□R)�1;
Positive P. Safety: �NZ(□R)�1;

16 / 19 cslcg-zerosum
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Contribution 2: Conjunction of Objectives

Theorem
Let Φ be a conjunction of NZ and AS objectives for safety and reachability path
specifications. Then the winning region �Φ�i is computable.

⇝ More in the paper: how to represent/combine winning strategies with possibly
infinite memory (case NZ(□ . . .)) with infinite state space.

NB: It is the “maximal” possible result:

Bertrand and al [BBS07] proves that NZ(□♢R) (Büchi) and
AS(□♢R1∧♢□R2) cases are undecidable.

[May03] proved that �E(□R)�1 cannot be computed.

17 / 19 cslcg-conj
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Contribution 3: Core

Theorem
For a pair (G ,Γ) where players’ objectives are almost-sure reachability or almost-sure
safety objectives, and property Γ= AS(ϕ) with ϕ of the form

∧
i ♢Ri ,

∧
i□Ri , or∧

i□♢Ri , the problems of E-Core and A-Core are decidable.

Guess the set of winning players W ⊆ Agt;
Check that the 1.5-player game of Agt vs ; is winning for the conjunction:

Γ∧ ∧
i∈W

AS(ϕi )∧
∧
i∉W

NZ(¬ϕi )

For all C ⊆W , check that C against C is losing.
NB: “maximal” result since Büchi+coBüchi objectives make the problem undecidable
[BBS07].
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Summary and future work

Rational Verification problem on infinite state still decidable;
Qualitative Objectives for Stochastic Equilibria;

vs : The probabilistic setting is more computable than the ND one.

Future work:
Restrictions on the strategy classes (FM only?);
Nash Equilibria;
Partial observation (Signal Games).

Thank you for your attention
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Strategy Classes

A strategy for player i is:
σi : S

+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ S+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ S∗,∀s ∈ S+,σi (h · s)=σi (s)

Can’t we just play with DP strategies only?
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Strategy Classes, Updated

A strategy for player i is: σi : (L ·M∗)+ → Dist(Act)

Determistic: only one action with probability 1;

∀h ∈ (L ·M∗)+,∃α :σi (h)[α]= 1

Positional: depends only on the current state;

∀h ∈ (L ·M∗)∗,∀s ∈ L ·M∗,σi (h · s)=σi (s)

Finite Memory: the distribution of actions can be computed by a finite automaton.

∀δ ∈ Dist(Act), {h ∈ (L ·M∗)+ | σi (h)= δ} is a regular set

and the set of possible distributions is finite.

P strategies may not be finitely represented. PFM are finitely represented, Counting too.
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Strategy Classes, Updated, Counting

A strategy for player i is Counting: if there exist two PFM strategies σu ,σv such that:

∀n≥ 1,∀h ∈ Sn,σ(h)= pn ·σu(h)+ (1−pn)σ
v (h)

Where:
pn = 2−1/(2k )

Counting strategies are sufficient for winning NZ(□ · · ·).

4 / 5 strategyclasses3
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